Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900882012> ?p ?o ?g. }
- W2900882012 endingPage "137" @default.
- W2900882012 startingPage "121" @default.
- W2900882012 abstract "This paper presents a novel approach for extracting the knowledge base (KB) of a Mamdani fuzzy rule based system (FRBS) for stock market prediction. The KB, which is the most important component of the FRBS, has two main components: rule base (RB) and data base (DB). In the proposed model, the RB is learned using repeated incremental pruning to produce error reduction (RIPPER), which is state-of-the-art in classification rule induction. The RIPPER algorithm is applied to classification problems. In order to extend it for regression problems, unsupervised discretization of the target attribute and supervised discretization of continuous input attributes are used. Next, the classification rules obtained from RIPPER are fuzzified and the initial Mamdani FRBS is formed. The DB is tuned using a Genetic Algorithm (GA). The proposed model in this paper is the first model utilizing directly capabilities and benefits of rule-based classification systems in regression. The accuracy of the proposed model is tested in the context of stock market prediction, which is a complex and difficult area in regression problems. The proposed model is implemented using several indices from different stock markets such as the Taiwan Stock Exchange Index (TSE), Tehran Price Index (TEPIX). Other indices including the Industry Index, Top 50 Companies Index and Financial Group Index from Tehran Stock Exchange are also considered. Furthermore, the daily stock prices of multiple large companies such as Apple, DELL, IBM, British Airlines and Ryanair Airlines are incorporated. As shown by the mean absolute percentage error (MAPE) and non-parametric statistical tests, the proposed model offers superior performance compared to other models." @default.
- W2900882012 created "2018-11-29" @default.
- W2900882012 creator A5052390681 @default.
- W2900882012 date "2019-02-01" @default.
- W2900882012 modified "2023-10-17" @default.
- W2900882012 title "Evolutionary fuzzification of RIPPER for regression: Case study of stock prediction" @default.
- W2900882012 cites W1671614046 @default.
- W2900882012 cites W1866279363 @default.
- W2900882012 cites W1969765329 @default.
- W2900882012 cites W1976611654 @default.
- W2900882012 cites W1978520392 @default.
- W2900882012 cites W1985930470 @default.
- W2900882012 cites W1991261837 @default.
- W2900882012 cites W1992176519 @default.
- W2900882012 cites W1997994299 @default.
- W2900882012 cites W2016210396 @default.
- W2900882012 cites W2017128157 @default.
- W2900882012 cites W2017812666 @default.
- W2900882012 cites W2018199033 @default.
- W2900882012 cites W2027391855 @default.
- W2900882012 cites W2028660455 @default.
- W2900882012 cites W2032371326 @default.
- W2900882012 cites W2035877864 @default.
- W2900882012 cites W2043406008 @default.
- W2900882012 cites W2053630555 @default.
- W2900882012 cites W2066289234 @default.
- W2900882012 cites W2078365380 @default.
- W2900882012 cites W2093620744 @default.
- W2900882012 cites W2133121564 @default.
- W2900882012 cites W2140460921 @default.
- W2900882012 cites W2153851210 @default.
- W2900882012 cites W2155640378 @default.
- W2900882012 cites W2162389778 @default.
- W2900882012 cites W2164400088 @default.
- W2900882012 cites W2165466912 @default.
- W2900882012 cites W2226829922 @default.
- W2900882012 cites W2236744271 @default.
- W2900882012 cites W2268394201 @default.
- W2900882012 cites W2269846813 @default.
- W2900882012 cites W2282161397 @default.
- W2900882012 cites W2328378351 @default.
- W2900882012 cites W2342935826 @default.
- W2900882012 cites W2503191342 @default.
- W2900882012 cites W2547835482 @default.
- W2900882012 cites W2564685186 @default.
- W2900882012 cites W2570899557 @default.
- W2900882012 cites W2614362170 @default.
- W2900882012 cites W2724908383 @default.
- W2900882012 cites W2735745260 @default.
- W2900882012 cites W2747952842 @default.
- W2900882012 cites W2766239654 @default.
- W2900882012 cites W2776518198 @default.
- W2900882012 cites W2790563395 @default.
- W2900882012 cites W2792585368 @default.
- W2900882012 cites W2793977048 @default.
- W2900882012 cites W2800314720 @default.
- W2900882012 cites W4292671038 @default.
- W2900882012 cites W855508711 @default.
- W2900882012 doi "https://doi.org/10.1016/j.neucom.2018.11.052" @default.
- W2900882012 hasPublicationYear "2019" @default.
- W2900882012 type Work @default.
- W2900882012 sameAs 2900882012 @default.
- W2900882012 citedByCount "21" @default.
- W2900882012 countsByYear W29008820122019 @default.
- W2900882012 countsByYear W29008820122020 @default.
- W2900882012 countsByYear W29008820122021 @default.
- W2900882012 countsByYear W29008820122022 @default.
- W2900882012 countsByYear W29008820122023 @default.
- W2900882012 crossrefType "journal-article" @default.
- W2900882012 hasAuthorship W2900882012A5052390681 @default.
- W2900882012 hasConcept C10138342 @default.
- W2900882012 hasConcept C105795698 @default.
- W2900882012 hasConcept C119857082 @default.
- W2900882012 hasConcept C124101348 @default.
- W2900882012 hasConcept C149782125 @default.
- W2900882012 hasConcept C150217764 @default.
- W2900882012 hasConcept C154945302 @default.
- W2900882012 hasConcept C159149176 @default.
- W2900882012 hasConcept C162324750 @default.
- W2900882012 hasConcept C200870193 @default.
- W2900882012 hasConcept C2780049643 @default.
- W2900882012 hasConcept C33923547 @default.
- W2900882012 hasConcept C41008148 @default.
- W2900882012 hasConcept C42011625 @default.
- W2900882012 hasConcept C50644808 @default.
- W2900882012 hasConcept C58166 @default.
- W2900882012 hasConcept C83546350 @default.
- W2900882012 hasConceptScore W2900882012C10138342 @default.
- W2900882012 hasConceptScore W2900882012C105795698 @default.
- W2900882012 hasConceptScore W2900882012C119857082 @default.
- W2900882012 hasConceptScore W2900882012C124101348 @default.
- W2900882012 hasConceptScore W2900882012C149782125 @default.
- W2900882012 hasConceptScore W2900882012C150217764 @default.
- W2900882012 hasConceptScore W2900882012C154945302 @default.
- W2900882012 hasConceptScore W2900882012C159149176 @default.
- W2900882012 hasConceptScore W2900882012C162324750 @default.
- W2900882012 hasConceptScore W2900882012C200870193 @default.
- W2900882012 hasConceptScore W2900882012C2780049643 @default.