Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900918122> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2900918122 abstract "In the last decade, data security has become a primary concern for an increasing amount of companies around the world. Protecting the customer's privacy is now at the core of many businesses operating in any kind of market. Thus, the demand for new technologies to safeguard user data and prevent data breaches has increased accordingly. In this work, we investigate a machine learning-based approach to automatically extract sources and sinks from arbitrary Java libraries. Our method exploits several different features based on semantic, syntactic, intra-procedural dataflow and class-hierarchy traits embedded into the bytecode to distinguish sources and sinks. The performed experiments show that, under certain conditions and after some preprocessing, sources and sinks across different libraries share common characteristics that allow a machine learning model to distinguish them from the other library methods. The prototype model achieved remarkable results of 86% accuracy and 81% F-measure on our validation set of roughly 600 methods." @default.
- W2900918122 created "2018-11-29" @default.
- W2900918122 creator A5024421637 @default.
- W2900918122 creator A5057253145 @default.
- W2900918122 creator A5072603056 @default.
- W2900918122 date "2018-09-01" @default.
- W2900918122 modified "2023-09-23" @default.
- W2900918122 title "[Research Paper] Automatic Detection of Sources and Sinks in Arbitrary Java Libraries" @default.
- W2900918122 cites W1678356000 @default.
- W2900918122 cites W1996134788 @default.
- W2900918122 cites W2062800332 @default.
- W2900918122 cites W2078197322 @default.
- W2900918122 cites W2094873755 @default.
- W2900918122 cites W2133990480 @default.
- W2900918122 cites W2343325785 @default.
- W2900918122 cites W4212883601 @default.
- W2900918122 cites W4238530616 @default.
- W2900918122 cites W4239510810 @default.
- W2900918122 cites W4244726870 @default.
- W2900918122 doi "https://doi.org/10.1109/scam.2018.00019" @default.
- W2900918122 hasPublicationYear "2018" @default.
- W2900918122 type Work @default.
- W2900918122 sameAs 2900918122 @default.
- W2900918122 citedByCount "2" @default.
- W2900918122 countsByYear W29009181222019 @default.
- W2900918122 countsByYear W29009181222022 @default.
- W2900918122 crossrefType "proceedings-article" @default.
- W2900918122 hasAuthorship W2900918122A5024421637 @default.
- W2900918122 hasAuthorship W2900918122A5057253145 @default.
- W2900918122 hasAuthorship W2900918122A5072603056 @default.
- W2900918122 hasConcept C111919701 @default.
- W2900918122 hasConcept C199360897 @default.
- W2900918122 hasConcept C41008148 @default.
- W2900918122 hasConcept C548217200 @default.
- W2900918122 hasConceptScore W2900918122C111919701 @default.
- W2900918122 hasConceptScore W2900918122C199360897 @default.
- W2900918122 hasConceptScore W2900918122C41008148 @default.
- W2900918122 hasConceptScore W2900918122C548217200 @default.
- W2900918122 hasLocation W29009181221 @default.
- W2900918122 hasOpenAccess W2900918122 @default.
- W2900918122 hasPrimaryLocation W29009181221 @default.
- W2900918122 hasRelatedWork W1490787830 @default.
- W2900918122 hasRelatedWork W1493446239 @default.
- W2900918122 hasRelatedWork W1527178015 @default.
- W2900918122 hasRelatedWork W1860988706 @default.
- W2900918122 hasRelatedWork W1979547103 @default.
- W2900918122 hasRelatedWork W2137409926 @default.
- W2900918122 hasRelatedWork W2162118494 @default.
- W2900918122 hasRelatedWork W2383147678 @default.
- W2900918122 hasRelatedWork W4254917997 @default.
- W2900918122 hasRelatedWork W2528467228 @default.
- W2900918122 isParatext "false" @default.
- W2900918122 isRetracted "false" @default.
- W2900918122 magId "2900918122" @default.
- W2900918122 workType "article" @default.