Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900942018> ?p ?o ?g. }
- W2900942018 abstract "Mental and behavioural disorders introduce a significant burden on society, estimated to account for 12% of the global burden of disease, with approximately 450 million suffering from them every day, and only a small number of those getting any treatment. The situation will worsen with time, with unipolar depressive disorders predicted by the World Health Organisation to become the leading cause of disabilities by 2030. Mental disorders affect primarily the mind and the brain, leading to pathological changes in emotions or cognition. Although clinical manifestations of different mental disorders may vary, Liddle et al. suggested five principal symptom dimensions, including reality distortion, disorganisation, psychomotor, mood and anxiety dimensions. For assessment of symptoms in clinical practice, the structured clinical interview, alongside standard questionnaires are used, but in many cases are not providing a reliable and objective diagnostic tool due to the complexity of the assessed phenomena. Activity and motion analysis has the potential to be used as a diagnostic tool for mental disorders. However, to-date, little work has been performed in turning stratification measures of activity into useful symptom markers. The research presented in this thesis has focused on the identification of objective activity and behaviour metrics that could be useful for the analysis of mental health symptoms in the above mentioned dimensions. Particular attention is given to the analysis of objective differences between disorders, as well as identification of clinical episodes of mania and depression in bipolar patients, and deterioration in borderline personality disorder patients. A principled framework is proposed for mHealth monitoring of psychiatric patients, based on measurable changes in behaviour, represented in physical activity time series, collected via mobile and wearable devices. The framework defines methods for direct computational analysis of symptoms in disorganisation and psychomotor dimensions, as well as measures for indirect assessment of mood, using patterns of physical activity, sleep and circadian rhythms. An extensive mHealth software tracking system was constructed, and data collected from over 100 individuals. Using the developed framework, the accuracy of differentiation between healthy controls and bipolar disorder was 67%, healthy controls and borderline personality disorder 70%, and bipolar vs. borderline personality disorder 80%. For identification of clinical states of euthymia, mania and depression the accuracy of differentiation of euthymia and mania was 80%, euthymia and depression 85% and mania and depression 90%, when using leave-one-out cross-validation. For personalised mood models, the mean absolute error of symptom scores estimation was in the range of 1.36 to 3.32 points, this corresponds to the ranges reserved in psychiatric questionnaires for a unique identifiable mood state (4-5 points). Finally, the methods were applied to a new data set (schizophrenia patients and matched controls) and were shown to be 95.3% accurate using leave-one-out cross-validation at classifying the cohort. Both physiological as well as activity features were relevant for classification of this cohort, and so the hypothesis that heart rate added additional predictive power was tested. The combination of HR and locomotor activity features provided almost a 10% increase in classification accuracy above using locomotor features alone, and almost a 17% increase over using heart rate based features alone. The approach of computational behaviour analysis, proposed in this thesis, has the potential for early identification of clinical deterioration in ambulatory patients, and allows for the specification of distinct and measurable behavioural phenotypes, thus enabling better understanding and treatment of mental disorders." @default.
- W2900942018 created "2018-11-29" @default.
- W2900942018 creator A5006873996 @default.
- W2900942018 date "2016-01-01" @default.
- W2900942018 modified "2023-09-27" @default.
- W2900942018 title "Towards automated symptoms assessment in mental health" @default.
- W2900942018 cites W117545607 @default.
- W2900942018 cites W1277966809 @default.
- W2900942018 cites W133724910 @default.
- W2900942018 cites W138321229 @default.
- W2900942018 cites W1483365869 @default.
- W2900942018 cites W1490882700 @default.
- W2900942018 cites W1507001215 @default.
- W2900942018 cites W1511477473 @default.
- W2900942018 cites W1544913332 @default.
- W2900942018 cites W1547422201 @default.
- W2900942018 cites W1551419564 @default.
- W2900942018 cites W1554931831 @default.
- W2900942018 cites W155662389 @default.
- W2900942018 cites W1589858124 @default.
- W2900942018 cites W1591063865 @default.
- W2900942018 cites W159391136 @default.
- W2900942018 cites W1594278800 @default.
- W2900942018 cites W1630082356 @default.
- W2900942018 cites W1663973292 @default.
- W2900942018 cites W1845664948 @default.
- W2900942018 cites W1862394037 @default.
- W2900942018 cites W1885494862 @default.
- W2900942018 cites W1898504652 @default.
- W2900942018 cites W1966007095 @default.
- W2900942018 cites W1969822000 @default.
- W2900942018 cites W1970133878 @default.
- W2900942018 cites W1970324938 @default.
- W2900942018 cites W1970447009 @default.
- W2900942018 cites W1970581372 @default.
- W2900942018 cites W1970841939 @default.
- W2900942018 cites W1971528267 @default.
- W2900942018 cites W1972884312 @default.
- W2900942018 cites W1975405479 @default.
- W2900942018 cites W1977465442 @default.
- W2900942018 cites W1978626522 @default.
- W2900942018 cites W1980446982 @default.
- W2900942018 cites W1980678916 @default.
- W2900942018 cites W1981738711 @default.
- W2900942018 cites W1983882084 @default.
- W2900942018 cites W1984206720 @default.
- W2900942018 cites W1984417371 @default.
- W2900942018 cites W1985845597 @default.
- W2900942018 cites W1986275520 @default.
- W2900942018 cites W1989460808 @default.
- W2900942018 cites W1989895539 @default.
- W2900942018 cites W1990349435 @default.
- W2900942018 cites W1990500546 @default.
- W2900942018 cites W1990729619 @default.
- W2900942018 cites W1991656650 @default.
- W2900942018 cites W1992716541 @default.
- W2900942018 cites W1994035894 @default.
- W2900942018 cites W1995200202 @default.
- W2900942018 cites W1997695932 @default.
- W2900942018 cites W1999227766 @default.
- W2900942018 cites W1999992635 @default.
- W2900942018 cites W2001969754 @default.
- W2900942018 cites W2003015777 @default.
- W2900942018 cites W2003961404 @default.
- W2900942018 cites W2004458660 @default.
- W2900942018 cites W2004564420 @default.
- W2900942018 cites W2004862157 @default.
- W2900942018 cites W2005069458 @default.
- W2900942018 cites W2005506966 @default.
- W2900942018 cites W2006352405 @default.
- W2900942018 cites W2009375902 @default.
- W2900942018 cites W2010163891 @default.
- W2900942018 cites W2011231933 @default.
- W2900942018 cites W2011749916 @default.
- W2900942018 cites W2011917973 @default.
- W2900942018 cites W2013868392 @default.
- W2900942018 cites W2014093692 @default.
- W2900942018 cites W2017821362 @default.
- W2900942018 cites W2021044602 @default.
- W2900942018 cites W2021356874 @default.
- W2900942018 cites W2021452404 @default.
- W2900942018 cites W2022373774 @default.
- W2900942018 cites W2022523880 @default.
- W2900942018 cites W2022882039 @default.
- W2900942018 cites W2023311435 @default.
- W2900942018 cites W2023731405 @default.
- W2900942018 cites W2023968896 @default.
- W2900942018 cites W2024774719 @default.
- W2900942018 cites W2025755979 @default.
- W2900942018 cites W2027309689 @default.
- W2900942018 cites W2030286152 @default.
- W2900942018 cites W2031668066 @default.
- W2900942018 cites W2038123411 @default.
- W2900942018 cites W2039464952 @default.
- W2900942018 cites W2040891326 @default.
- W2900942018 cites W2041131412 @default.
- W2900942018 cites W2041360965 @default.
- W2900942018 cites W2041388941 @default.
- W2900942018 cites W2041782669 @default.
- W2900942018 cites W2043577705 @default.