Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900942517> ?p ?o ?g. }
- W2900942517 abstract "Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity after exposure to amoxicillin-clavulanic acid (Amox-Clav). Ten healthy participants were enrolled. All received 5 days of Amox-Clav. Half were randomized to autoFMT, derived from stool collected pre-antimicrobial exposure, by enema, and half to saline enema. Participants submitted stool samples pre- and post-Amox-Clav and enema and during a 90-day follow-up period. Shotgun metagenomic sequencing revealed taxonomic composition, resistance gene content, and metabolic capacity. Amox-Clav significantly altered gut taxonomic composition in all participants (n = 10, P < 0.01); however, only three participants exhibited major changes at the phylum level following exposure. In the cohort as a whole, beta-lactamase genes were enriched following Amox-Clav (P < 0.05), and predicted metabolic capacity was significantly altered (P < 0.01). Species composition, metabolic capacity, and beta-lactamase abundance returned to pre-antimicrobial exposure state 7 days after either autoFMT or saline enema (P > 0.05, compared to enrollment). Alterations to microbial metabolic capacity occurred following antimicrobial exposure even in participants without substantial taxonomic disruption, potentially creating open niches for pathogen colonization. Our findings suggest that metabolic potential is an important consideration for complete assessment of antimicrobial impact on the microbiome. AutoFMT was well tolerated and may have contributed to phylogenetic recovery. (This study has been registered at ClinicalTrials.gov under identifier NCT02046525.)IMPORTANCE The spread of multidrug resistance among pathogenic organisms threatens the efficacy of antimicrobial treatment options. The human gut serves as a reservoir for many drug-resistant organisms and their resistance genes, and perturbation of the gut microbiome by antimicrobial exposure can open metabolic niches to resistant pathogens. Once established in the gut, antimicrobial-resistant bacteria can persist even after antimicrobial exposure ceases. Strategies to prevent multidrug-resistant organism (MDRO) infections are scarce, but autologous fecal microbiota transplantation (autoFMT) may limit gastrointestinal MDRO expansion. AutoFMT involves banking one's feces during a healthy state for later use in restoring gut microbiota following perturbation. This pilot study evaluated the effect of amoxicillin-clavulanic acid (Amox-Clav) exposure and autoFMT on gastrointestinal microbiome taxonomic composition, resistance gene content, and metabolic capacity. Importantly, we found that metabolic capacity was perturbed even in cases where gross phylogeny remained unchanged and that autoFMT was safe and well tolerated." @default.
- W2900942517 created "2018-11-29" @default.
- W2900942517 creator A5008374437 @default.
- W2900942517 creator A5012275610 @default.
- W2900942517 creator A5014140537 @default.
- W2900942517 creator A5017825670 @default.
- W2900942517 creator A5031044365 @default.
- W2900942517 creator A5045925745 @default.
- W2900942517 creator A5048951944 @default.
- W2900942517 creator A5058753196 @default.
- W2900942517 creator A5059310727 @default.
- W2900942517 creator A5061360456 @default.
- W2900942517 creator A5071115916 @default.
- W2900942517 creator A5081017757 @default.
- W2900942517 creator A5088288445 @default.
- W2900942517 date "2018-12-26" @default.
- W2900942517 modified "2023-10-16" @default.
- W2900942517 title "Impact of Amoxicillin-Clavulanate followed by Autologous Fecal Microbiota Transplantation on Fecal Microbiome Structure and Metabolic Potential" @default.
- W2900942517 cites W1649426397 @default.
- W2900942517 cites W1827992700 @default.
- W2900942517 cites W1964640602 @default.
- W2900942517 cites W1967821667 @default.
- W2900942517 cites W1972856040 @default.
- W2900942517 cites W1977352047 @default.
- W2900942517 cites W2004960255 @default.
- W2900942517 cites W2015375855 @default.
- W2900942517 cites W2031893281 @default.
- W2900942517 cites W2032356948 @default.
- W2900942517 cites W2043442946 @default.
- W2900942517 cites W2048673910 @default.
- W2900942517 cites W2084057318 @default.
- W2900942517 cites W2084646638 @default.
- W2900942517 cites W2087209010 @default.
- W2900942517 cites W2095040140 @default.
- W2900942517 cites W2103808218 @default.
- W2900942517 cites W2109127169 @default.
- W2900942517 cites W2128769815 @default.
- W2900942517 cites W2132406596 @default.
- W2900942517 cites W2135621733 @default.
- W2900942517 cites W2139607253 @default.
- W2900942517 cites W2140993771 @default.
- W2900942517 cites W2142439363 @default.
- W2900942517 cites W2148171446 @default.
- W2900942517 cites W2151450070 @default.
- W2900942517 cites W2155317599 @default.
- W2900942517 cites W2156665896 @default.
- W2900942517 cites W2160721831 @default.
- W2900942517 cites W2161590746 @default.
- W2900942517 cites W2168527621 @default.
- W2900942517 cites W2168685192 @default.
- W2900942517 cites W2211038293 @default.
- W2900942517 cites W2291264396 @default.
- W2900942517 cites W2319499039 @default.
- W2900942517 cites W2380447136 @default.
- W2900942517 cites W2396558681 @default.
- W2900942517 cites W2477430876 @default.
- W2900942517 cites W2544493586 @default.
- W2900942517 cites W2571820890 @default.
- W2900942517 cites W2584994086 @default.
- W2900942517 cites W2610010097 @default.
- W2900942517 cites W2613837800 @default.
- W2900942517 cites W2624135745 @default.
- W2900942517 cites W2735259022 @default.
- W2900942517 cites W2752994406 @default.
- W2900942517 cites W2754579667 @default.
- W2900942517 cites W2754916606 @default.
- W2900942517 cites W2763845479 @default.
- W2900942517 cites W2791343295 @default.
- W2900942517 cites W2797374021 @default.
- W2900942517 cites W3140145676 @default.
- W2900942517 cites W4230207194 @default.
- W2900942517 doi "https://doi.org/10.1128/mspheredirect.00588-18" @default.
- W2900942517 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6249645" @default.
- W2900942517 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30463925" @default.
- W2900942517 hasPublicationYear "2018" @default.
- W2900942517 type Work @default.
- W2900942517 sameAs 2900942517 @default.
- W2900942517 citedByCount "17" @default.
- W2900942517 countsByYear W29009425172019 @default.
- W2900942517 countsByYear W29009425172020 @default.
- W2900942517 countsByYear W29009425172021 @default.
- W2900942517 countsByYear W29009425172022 @default.
- W2900942517 countsByYear W29009425172023 @default.
- W2900942517 crossrefType "journal-article" @default.
- W2900942517 hasAuthorship W2900942517A5008374437 @default.
- W2900942517 hasAuthorship W2900942517A5012275610 @default.
- W2900942517 hasAuthorship W2900942517A5014140537 @default.
- W2900942517 hasAuthorship W2900942517A5017825670 @default.
- W2900942517 hasAuthorship W2900942517A5031044365 @default.
- W2900942517 hasAuthorship W2900942517A5045925745 @default.
- W2900942517 hasAuthorship W2900942517A5048951944 @default.
- W2900942517 hasAuthorship W2900942517A5058753196 @default.
- W2900942517 hasAuthorship W2900942517A5059310727 @default.
- W2900942517 hasAuthorship W2900942517A5061360456 @default.
- W2900942517 hasAuthorship W2900942517A5071115916 @default.
- W2900942517 hasAuthorship W2900942517A5081017757 @default.
- W2900942517 hasAuthorship W2900942517A5088288445 @default.
- W2900942517 hasBestOaLocation W29009425171 @default.
- W2900942517 hasConcept C104317684 @default.
- W2900942517 hasConcept C126322002 @default.