Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900967578> ?p ?o ?g. }
- W2900967578 endingPage "40" @default.
- W2900967578 startingPage "35" @default.
- W2900967578 abstract "We implement deep learning techniques to forecast the price of the three most widely traded digital currencies i.e., Bitcoin, Digital Cash and Ripple. To the best of our knowledge, this is the first work to make use of deep learning in cryptocurrency prediction. The results from testing the existence of nonlinearity revealed that the time series of all digital currencies exhibit fractal dynamics, long memory and self-similarity. The predictability of long-short term memory neural network topologies (LSTM) is significantly higher when compared to the generalized regression neural architecture, set forth as our benchmark system. The latter failed to approximate global nonlinear hidden patterns regardless of the degree of contamination with noise, as they are based on Gaussian kernels suitable only for local approximation of non-stationary signals. Although the computational burden of the LSTM model is higher as opposed to brute force in nonlinear pattern recognition, eventually deep learning was found to be highly efficient in forecasting the inherent chaotic dynamics of cryptocurrency markets." @default.
- W2900967578 created "2018-11-29" @default.
- W2900967578 creator A5038937667 @default.
- W2900967578 creator A5049507437 @default.
- W2900967578 date "2019-01-01" @default.
- W2900967578 modified "2023-10-12" @default.
- W2900967578 title "Cryptocurrency forecasting with deep learning chaotic neural networks" @default.
- W2900967578 cites W1259090559 @default.
- W2900967578 cites W1825423071 @default.
- W2900967578 cites W1875160079 @default.
- W2900967578 cites W1965520378 @default.
- W2900967578 cites W2017333734 @default.
- W2900967578 cites W2017821362 @default.
- W2900967578 cites W2032271734 @default.
- W2900967578 cites W2053615983 @default.
- W2900967578 cites W2064675550 @default.
- W2900967578 cites W2124428761 @default.
- W2900967578 cites W2149723649 @default.
- W2900967578 cites W2164941910 @default.
- W2900967578 cites W2189160292 @default.
- W2900967578 cites W2524052612 @default.
- W2900967578 cites W2560314556 @default.
- W2900967578 cites W2572554044 @default.
- W2900967578 cites W2573587735 @default.
- W2900967578 cites W2585869517 @default.
- W2900967578 cites W2694190980 @default.
- W2900967578 cites W2737598190 @default.
- W2900967578 cites W2758263367 @default.
- W2900967578 cites W2765776117 @default.
- W2900967578 cites W2769091037 @default.
- W2900967578 cites W2780153840 @default.
- W2900967578 cites W2783987496 @default.
- W2900967578 cites W2791577170 @default.
- W2900967578 cites W2793264542 @default.
- W2900967578 cites W2799918576 @default.
- W2900967578 cites W2802435027 @default.
- W2900967578 cites W2808830795 @default.
- W2900967578 cites W2809533013 @default.
- W2900967578 cites W2883043781 @default.
- W2900967578 cites W2885041992 @default.
- W2900967578 cites W2888832810 @default.
- W2900967578 cites W2889272881 @default.
- W2900967578 cites W2913325799 @default.
- W2900967578 cites W4299606612 @default.
- W2900967578 doi "https://doi.org/10.1016/j.chaos.2018.11.014" @default.
- W2900967578 hasPublicationYear "2019" @default.
- W2900967578 type Work @default.
- W2900967578 sameAs 2900967578 @default.
- W2900967578 citedByCount "198" @default.
- W2900967578 countsByYear W29009675782019 @default.
- W2900967578 countsByYear W29009675782020 @default.
- W2900967578 countsByYear W29009675782021 @default.
- W2900967578 countsByYear W29009675782022 @default.
- W2900967578 countsByYear W29009675782023 @default.
- W2900967578 crossrefType "journal-article" @default.
- W2900967578 hasAuthorship W2900967578A5038937667 @default.
- W2900967578 hasAuthorship W2900967578A5049507437 @default.
- W2900967578 hasConcept C108583219 @default.
- W2900967578 hasConcept C119857082 @default.
- W2900967578 hasConcept C121332964 @default.
- W2900967578 hasConcept C13280743 @default.
- W2900967578 hasConcept C154945302 @default.
- W2900967578 hasConcept C158622935 @default.
- W2900967578 hasConcept C180706569 @default.
- W2900967578 hasConcept C185798385 @default.
- W2900967578 hasConcept C205649164 @default.
- W2900967578 hasConcept C2777052490 @default.
- W2900967578 hasConcept C38652104 @default.
- W2900967578 hasConcept C41008148 @default.
- W2900967578 hasConcept C50644808 @default.
- W2900967578 hasConcept C62520636 @default.
- W2900967578 hasConceptScore W2900967578C108583219 @default.
- W2900967578 hasConceptScore W2900967578C119857082 @default.
- W2900967578 hasConceptScore W2900967578C121332964 @default.
- W2900967578 hasConceptScore W2900967578C13280743 @default.
- W2900967578 hasConceptScore W2900967578C154945302 @default.
- W2900967578 hasConceptScore W2900967578C158622935 @default.
- W2900967578 hasConceptScore W2900967578C180706569 @default.
- W2900967578 hasConceptScore W2900967578C185798385 @default.
- W2900967578 hasConceptScore W2900967578C205649164 @default.
- W2900967578 hasConceptScore W2900967578C2777052490 @default.
- W2900967578 hasConceptScore W2900967578C38652104 @default.
- W2900967578 hasConceptScore W2900967578C41008148 @default.
- W2900967578 hasConceptScore W2900967578C50644808 @default.
- W2900967578 hasConceptScore W2900967578C62520636 @default.
- W2900967578 hasLocation W29009675781 @default.
- W2900967578 hasOpenAccess W2900967578 @default.
- W2900967578 hasPrimaryLocation W29009675781 @default.
- W2900967578 hasRelatedWork W2907143025 @default.
- W2900967578 hasRelatedWork W2915579847 @default.
- W2900967578 hasRelatedWork W2948261066 @default.
- W2900967578 hasRelatedWork W3123387860 @default.
- W2900967578 hasRelatedWork W3164717803 @default.
- W2900967578 hasRelatedWork W3211641817 @default.
- W2900967578 hasRelatedWork W4283364608 @default.
- W2900967578 hasRelatedWork W4291291739 @default.
- W2900967578 hasRelatedWork W4321377877 @default.
- W2900967578 hasRelatedWork W4366411693 @default.