Matches in SemOpenAlex for { <https://semopenalex.org/work/W2900996978> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2900996978 abstract "In computer vision detection and recognition of accurate image with great efficiency in real time is a milestone for researchers. The aim of proposed system is to recognise an accurate image from a large set of database and refer a correct name to each face detected in each frame. In many situation every image frame contains a more than one face. To assigning a true name to every face in each frame, firstly it is important to detect a faces from an image is foremost task. In this system for face detection we have used the Viola Jones algorithm. To accomplish our objective of correct face naming normalization of image and distance vector plays an important role. Two isolated affinity matrices are designed for the same. L1 norm based regularizer is used to create a first matrix and ambiguously supervised structural metric learning algorithm is used to create another matrix. After creating two matrices they are fused to create fused affinity matrix which gives proper name to each face in fame. Mahalanobis distance of the data is used to form a matrix with ASML algorithm. While in training sample if large no. of unrelated features is there an L1 norm regularizer is more effective. Finally fusion of these two affinity matrices is used to assign a correct name of each face at proper position of in the frame." @default.
- W2900996978 created "2018-11-29" @default.
- W2900996978 creator A5021671297 @default.
- W2900996978 creator A5074135849 @default.
- W2900996978 date "2018-02-01" @default.
- W2900996978 modified "2023-09-26" @default.
- W2900996978 title "Accurate Face Tagging with Efficient Regularizer and Distance Metric Algorithm" @default.
- W2900996978 cites W1608560768 @default.
- W2900996978 cites W1657174467 @default.
- W2900996978 cites W1979889974 @default.
- W2900996978 cites W1993741228 @default.
- W2900996978 cites W2006158573 @default.
- W2900996978 cites W2026901210 @default.
- W2900996978 cites W2037511607 @default.
- W2900996978 cites W2103253739 @default.
- W2900996978 cites W2106008047 @default.
- W2900996978 cites W2111478152 @default.
- W2900996978 cites W2128862157 @default.
- W2900996978 cites W2170042230 @default.
- W2900996978 cites W2317001119 @default.
- W2900996978 cites W2368935620 @default.
- W2900996978 cites W3097096317 @default.
- W2900996978 cites W2547433272 @default.
- W2900996978 doi "https://doi.org/10.1109/icacct.2018.8529620" @default.
- W2900996978 hasPublicationYear "2018" @default.
- W2900996978 type Work @default.
- W2900996978 sameAs 2900996978 @default.
- W2900996978 citedByCount "1" @default.
- W2900996978 countsByYear W29009969782020 @default.
- W2900996978 crossrefType "proceedings-article" @default.
- W2900996978 hasAuthorship W2900996978A5021671297 @default.
- W2900996978 hasAuthorship W2900996978A5074135849 @default.
- W2900996978 hasConcept C11413529 @default.
- W2900996978 hasConcept C136886441 @default.
- W2900996978 hasConcept C144024400 @default.
- W2900996978 hasConcept C153180895 @default.
- W2900996978 hasConcept C154945302 @default.
- W2900996978 hasConcept C162324750 @default.
- W2900996978 hasConcept C176217482 @default.
- W2900996978 hasConcept C177264268 @default.
- W2900996978 hasConcept C19165224 @default.
- W2900996978 hasConcept C1921717 @default.
- W2900996978 hasConcept C199360897 @default.
- W2900996978 hasConcept C21547014 @default.
- W2900996978 hasConcept C2779304628 @default.
- W2900996978 hasConcept C31510193 @default.
- W2900996978 hasConcept C31972630 @default.
- W2900996978 hasConcept C36289849 @default.
- W2900996978 hasConcept C41008148 @default.
- W2900996978 hasConceptScore W2900996978C11413529 @default.
- W2900996978 hasConceptScore W2900996978C136886441 @default.
- W2900996978 hasConceptScore W2900996978C144024400 @default.
- W2900996978 hasConceptScore W2900996978C153180895 @default.
- W2900996978 hasConceptScore W2900996978C154945302 @default.
- W2900996978 hasConceptScore W2900996978C162324750 @default.
- W2900996978 hasConceptScore W2900996978C176217482 @default.
- W2900996978 hasConceptScore W2900996978C177264268 @default.
- W2900996978 hasConceptScore W2900996978C19165224 @default.
- W2900996978 hasConceptScore W2900996978C1921717 @default.
- W2900996978 hasConceptScore W2900996978C199360897 @default.
- W2900996978 hasConceptScore W2900996978C21547014 @default.
- W2900996978 hasConceptScore W2900996978C2779304628 @default.
- W2900996978 hasConceptScore W2900996978C31510193 @default.
- W2900996978 hasConceptScore W2900996978C31972630 @default.
- W2900996978 hasConceptScore W2900996978C36289849 @default.
- W2900996978 hasConceptScore W2900996978C41008148 @default.
- W2900996978 hasLocation W29009969781 @default.
- W2900996978 hasOpenAccess W2900996978 @default.
- W2900996978 hasPrimaryLocation W29009969781 @default.
- W2900996978 hasRelatedWork W1587820790 @default.
- W2900996978 hasRelatedWork W1755851145 @default.
- W2900996978 hasRelatedWork W1940264722 @default.
- W2900996978 hasRelatedWork W2043649191 @default.
- W2900996978 hasRelatedWork W2146577386 @default.
- W2900996978 hasRelatedWork W2187531412 @default.
- W2900996978 hasRelatedWork W2189561366 @default.
- W2900996978 hasRelatedWork W2248756197 @default.
- W2900996978 hasRelatedWork W2282077488 @default.
- W2900996978 hasRelatedWork W2516932488 @default.
- W2900996978 hasRelatedWork W2621210799 @default.
- W2900996978 hasRelatedWork W2765530666 @default.
- W2900996978 hasRelatedWork W2780067561 @default.
- W2900996978 hasRelatedWork W2953012881 @default.
- W2900996978 hasRelatedWork W2967424080 @default.
- W2900996978 hasRelatedWork W3006473586 @default.
- W2900996978 hasRelatedWork W2960871368 @default.
- W2900996978 hasRelatedWork W2993574995 @default.
- W2900996978 hasRelatedWork W3136649505 @default.
- W2900996978 hasRelatedWork W3150163545 @default.
- W2900996978 isParatext "false" @default.
- W2900996978 isRetracted "false" @default.
- W2900996978 magId "2900996978" @default.
- W2900996978 workType "article" @default.