Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901045276> ?p ?o ?g. }
- W2901045276 endingPage "1453" @default.
- W2901045276 startingPage "1443" @default.
- W2901045276 abstract "Electronic nose is an instrument equipped with chemical gas sensors and is used to sense, identify, and measure different odors. The problem arises when these sensors incorporate drift by the passage of time. The effect of drift is so adverse that the pattern recognition algorithms used for identification and measurement of odors fail to respond accurately. To overcome the challenge of drift in sensors, one of the most widely used techniques is system re-calibration, which is a cumbersome process. Keeping in mind the challenges of drift and issues of system re-calibration for real-life applications, this paper proposes a novel method to compensate drift in gas sensors with the following contributions: 1) the fitness function of a recursive metaheuristic optimization method is modified by embedding random forests learning for the quantification of six different gases under drift; 2) the proposed approach is able to compensate the long-term sensors drift without requiring any system re-calibration; and 3) the feature vector exploitation using particle swarm optimization reduces the computational complexity and increases the prediction accuracy of the system. A comparison is provided with different state-of-the-art approaches, and the proposed approach is found better in terms of prediction accuracy when tested on a benchmark dataset publically available." @default.
- W2901045276 created "2018-11-29" @default.
- W2901045276 creator A5043012225 @default.
- W2901045276 creator A5053314319 @default.
- W2901045276 date "2019-02-15" @default.
- W2901045276 modified "2023-09-29" @default.
- W2901045276 title "Heuristic Random Forests (HRF) for Drift Compensation in Electronic Nose Applications" @default.
- W2901045276 cites W1584393767 @default.
- W2901045276 cites W1974537279 @default.
- W2901045276 cites W1974679953 @default.
- W2901045276 cites W2006395821 @default.
- W2901045276 cites W2020033987 @default.
- W2901045276 cites W2022851810 @default.
- W2901045276 cites W2036737027 @default.
- W2901045276 cites W2042810309 @default.
- W2901045276 cites W2059477850 @default.
- W2901045276 cites W2086924174 @default.
- W2901045276 cites W2101207781 @default.
- W2901045276 cites W2125213524 @default.
- W2901045276 cites W2133440845 @default.
- W2901045276 cites W2139386984 @default.
- W2901045276 cites W2152195021 @default.
- W2901045276 cites W2158907459 @default.
- W2901045276 cites W2166465445 @default.
- W2901045276 cites W2166858657 @default.
- W2901045276 cites W2170836048 @default.
- W2901045276 cites W2319296287 @default.
- W2901045276 cites W2579628011 @default.
- W2901045276 cites W2767913699 @default.
- W2901045276 cites W4241095516 @default.
- W2901045276 doi "https://doi.org/10.1109/jsen.2018.2881745" @default.
- W2901045276 hasPublicationYear "2019" @default.
- W2901045276 type Work @default.
- W2901045276 sameAs 2901045276 @default.
- W2901045276 citedByCount "28" @default.
- W2901045276 countsByYear W29010452762019 @default.
- W2901045276 countsByYear W29010452762020 @default.
- W2901045276 countsByYear W29010452762021 @default.
- W2901045276 countsByYear W29010452762022 @default.
- W2901045276 countsByYear W29010452762023 @default.
- W2901045276 crossrefType "journal-article" @default.
- W2901045276 hasAuthorship W2901045276A5043012225 @default.
- W2901045276 hasAuthorship W2901045276A5053314319 @default.
- W2901045276 hasConcept C105795698 @default.
- W2901045276 hasConcept C11171543 @default.
- W2901045276 hasConcept C119857082 @default.
- W2901045276 hasConcept C12267149 @default.
- W2901045276 hasConcept C124101348 @default.
- W2901045276 hasConcept C13280743 @default.
- W2901045276 hasConcept C138885662 @default.
- W2901045276 hasConcept C154945302 @default.
- W2901045276 hasConcept C15744967 @default.
- W2901045276 hasConcept C165838908 @default.
- W2901045276 hasConcept C169258074 @default.
- W2901045276 hasConcept C173801870 @default.
- W2901045276 hasConcept C185798385 @default.
- W2901045276 hasConcept C205649164 @default.
- W2901045276 hasConcept C23895516 @default.
- W2901045276 hasConcept C2776401178 @default.
- W2901045276 hasConcept C2780009758 @default.
- W2901045276 hasConcept C2780023022 @default.
- W2901045276 hasConcept C33923547 @default.
- W2901045276 hasConcept C41008148 @default.
- W2901045276 hasConcept C41895202 @default.
- W2901045276 hasConcept C85617194 @default.
- W2901045276 hasConceptScore W2901045276C105795698 @default.
- W2901045276 hasConceptScore W2901045276C11171543 @default.
- W2901045276 hasConceptScore W2901045276C119857082 @default.
- W2901045276 hasConceptScore W2901045276C12267149 @default.
- W2901045276 hasConceptScore W2901045276C124101348 @default.
- W2901045276 hasConceptScore W2901045276C13280743 @default.
- W2901045276 hasConceptScore W2901045276C138885662 @default.
- W2901045276 hasConceptScore W2901045276C154945302 @default.
- W2901045276 hasConceptScore W2901045276C15744967 @default.
- W2901045276 hasConceptScore W2901045276C165838908 @default.
- W2901045276 hasConceptScore W2901045276C169258074 @default.
- W2901045276 hasConceptScore W2901045276C173801870 @default.
- W2901045276 hasConceptScore W2901045276C185798385 @default.
- W2901045276 hasConceptScore W2901045276C205649164 @default.
- W2901045276 hasConceptScore W2901045276C23895516 @default.
- W2901045276 hasConceptScore W2901045276C2776401178 @default.
- W2901045276 hasConceptScore W2901045276C2780009758 @default.
- W2901045276 hasConceptScore W2901045276C2780023022 @default.
- W2901045276 hasConceptScore W2901045276C33923547 @default.
- W2901045276 hasConceptScore W2901045276C41008148 @default.
- W2901045276 hasConceptScore W2901045276C41895202 @default.
- W2901045276 hasConceptScore W2901045276C85617194 @default.
- W2901045276 hasFunder F4320332753 @default.
- W2901045276 hasIssue "4" @default.
- W2901045276 hasLocation W29010452761 @default.
- W2901045276 hasOpenAccess W2901045276 @default.
- W2901045276 hasPrimaryLocation W29010452761 @default.
- W2901045276 hasRelatedWork W1608462205 @default.
- W2901045276 hasRelatedWork W2616952103 @default.
- W2901045276 hasRelatedWork W2979979539 @default.
- W2901045276 hasRelatedWork W3195168932 @default.
- W2901045276 hasRelatedWork W4205958290 @default.
- W2901045276 hasRelatedWork W4206558754 @default.