Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901067846> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2901067846 abstract "The aim of this paper is for classification for fatigue feature extraction parameters based on road surface response using the artificial neural network (ANN) technique. It is important for classification of the fatigue damage of automotive suspension as it is considers the random strain loading from the road surface contributed from complex variable amplitude loadings. In this study, the proposed method captured that strain signal collected from the car coil spring during the road test. Hence, the prediction of fatigue life need to assess based on actual loading to ensure the prediction results are accurate. The high amplitude segments were extracted from the strain signals using the discrete wavelet transform. This approach provides an advantage in assessing the signals containing random loads for both discontinuities and smooth components for the areas that contain high fatigue damage in the strain signal. From this, three significant fatigue features extraction parameters such as kurtosis, wavelet energy coefficients and fatigue damage were classified based on the similarities using ANN classification technique. This is important in analysing the clustering and classification were used in detection of fatigue damage according to the response of the various road surface condition. The results show the classifications using ANN give the accuracy based on the coefficient of determinant, R = 0.85 for all data. From on the accuracy of the ANN, it can be concluded that the discrete wavelet transform as a pre-processing method to extract the features from the signal for classification level of fatigue damage for the coil spring according to the response of loading based on road surface." @default.
- W2901067846 created "2018-11-29" @default.
- W2901067846 creator A5010428527 @default.
- W2901067846 creator A5015279326 @default.
- W2901067846 creator A5062641504 @default.
- W2901067846 date "2018-10-04" @default.
- W2901067846 modified "2023-09-27" @default.
- W2901067846 title "Artificial Neural Network Classification for Fatigue Feature Extraction Parameters Based on Road Surface Response" @default.
- W2901067846 cites W15470009 @default.
- W2901067846 cites W1603311593 @default.
- W2901067846 cites W1979256846 @default.
- W2901067846 cites W1996739430 @default.
- W2901067846 cites W2006743922 @default.
- W2901067846 cites W2070346109 @default.
- W2901067846 cites W2086279376 @default.
- W2901067846 cites W2143720714 @default.
- W2901067846 cites W2529897974 @default.
- W2901067846 cites W2619100184 @default.
- W2901067846 doi "https://doi.org/10.18517/ijaseit.8.4-2.6805" @default.
- W2901067846 hasPublicationYear "2018" @default.
- W2901067846 type Work @default.
- W2901067846 sameAs 2901067846 @default.
- W2901067846 citedByCount "2" @default.
- W2901067846 countsByYear W29010678462020 @default.
- W2901067846 countsByYear W29010678462021 @default.
- W2901067846 crossrefType "journal-article" @default.
- W2901067846 hasAuthorship W2901067846A5010428527 @default.
- W2901067846 hasAuthorship W2901067846A5015279326 @default.
- W2901067846 hasAuthorship W2901067846A5062641504 @default.
- W2901067846 hasBestOaLocation W29010678461 @default.
- W2901067846 hasConcept C127413603 @default.
- W2901067846 hasConcept C153180895 @default.
- W2901067846 hasConcept C154945302 @default.
- W2901067846 hasConcept C182664415 @default.
- W2901067846 hasConcept C196216189 @default.
- W2901067846 hasConcept C199360897 @default.
- W2901067846 hasConcept C2778712887 @default.
- W2901067846 hasConcept C2779843651 @default.
- W2901067846 hasConcept C41008148 @default.
- W2901067846 hasConcept C47432892 @default.
- W2901067846 hasConcept C50644808 @default.
- W2901067846 hasConcept C52622490 @default.
- W2901067846 hasConcept C66938386 @default.
- W2901067846 hasConceptScore W2901067846C127413603 @default.
- W2901067846 hasConceptScore W2901067846C153180895 @default.
- W2901067846 hasConceptScore W2901067846C154945302 @default.
- W2901067846 hasConceptScore W2901067846C182664415 @default.
- W2901067846 hasConceptScore W2901067846C196216189 @default.
- W2901067846 hasConceptScore W2901067846C199360897 @default.
- W2901067846 hasConceptScore W2901067846C2778712887 @default.
- W2901067846 hasConceptScore W2901067846C2779843651 @default.
- W2901067846 hasConceptScore W2901067846C41008148 @default.
- W2901067846 hasConceptScore W2901067846C47432892 @default.
- W2901067846 hasConceptScore W2901067846C50644808 @default.
- W2901067846 hasConceptScore W2901067846C52622490 @default.
- W2901067846 hasConceptScore W2901067846C66938386 @default.
- W2901067846 hasLocation W29010678461 @default.
- W2901067846 hasOpenAccess W2901067846 @default.
- W2901067846 hasPrimaryLocation W29010678461 @default.
- W2901067846 hasRelatedWork W2160869929 @default.
- W2901067846 hasRelatedWork W2183134700 @default.
- W2901067846 hasRelatedWork W2351004255 @default.
- W2901067846 hasRelatedWork W2351114469 @default.
- W2901067846 hasRelatedWork W2362085550 @default.
- W2901067846 hasRelatedWork W2374072059 @default.
- W2901067846 hasRelatedWork W2383197662 @default.
- W2901067846 hasRelatedWork W2541950815 @default.
- W2901067846 hasRelatedWork W2753693376 @default.
- W2901067846 hasRelatedWork W3183558285 @default.
- W2901067846 isParatext "false" @default.
- W2901067846 isRetracted "false" @default.
- W2901067846 magId "2901067846" @default.
- W2901067846 workType "article" @default.