Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901162987> ?p ?o ?g. }
- W2901162987 endingPage "21" @default.
- W2901162987 startingPage "12" @default.
- W2901162987 abstract "Piano key weirs (PKWs) are acquired and developed for free surface control structures which improve their performance by increasing the storage capacity and flood evacuation. In this study, the potential combinations of two popular artificial intelligence data-driven models (AI-DDMs) of multi-layer perceptron neural network (MLPNN) and adaptive neuro-fuzzy inference system (ANFIS) with four meta-heuristic optimization algorithms (particle swarm optimization, genetic algorithm, firefly algorithm & moth-flame optimization) are assessed for predicting the PKW’s flow rate. Comparing the outcomes of the ten standard and hybrid AI-DDMs with three empirical relations based on several statistics and diagnostic analysis (such as the Taylor diagram) for estimating the flow rate shows that the AI-DDMs can predict the passing flow more accurately. In addition, the particle swarm optimization and firefly algorithm meta-heuristic algorithms improve the performance of ANFIS and MLPNN, respectively. The Mann-Whitney test for investigating the differences between two independent applied models indicates a significant difference between the AI-DDMs and two of the empirical relations at the 95% confidence level." @default.
- W2901162987 created "2018-11-29" @default.
- W2901162987 creator A5043935498 @default.
- W2901162987 creator A5056858070 @default.
- W2901162987 date "2019-02-01" @default.
- W2901162987 modified "2023-10-02" @default.
- W2901162987 title "Hybrid meta-heuristics artificial intelligence models in simulating discharge passing the piano key weirs" @default.
- W2901162987 cites W1540864200 @default.
- W2901162987 cites W182956098 @default.
- W2901162987 cites W1970695256 @default.
- W2901162987 cites W1974066063 @default.
- W2901162987 cites W1977812219 @default.
- W2901162987 cites W1978153689 @default.
- W2901162987 cites W1980396446 @default.
- W2901162987 cites W1989721851 @default.
- W2901162987 cites W2004145388 @default.
- W2901162987 cites W2018525341 @default.
- W2901162987 cites W2019207321 @default.
- W2901162987 cites W2021461169 @default.
- W2901162987 cites W2026302091 @default.
- W2901162987 cites W2034162956 @default.
- W2901162987 cites W2035878957 @default.
- W2901162987 cites W2038065952 @default.
- W2901162987 cites W2061072416 @default.
- W2901162987 cites W2074136378 @default.
- W2901162987 cites W2097760549 @default.
- W2901162987 cites W2104637337 @default.
- W2901162987 cites W211694280 @default.
- W2901162987 cites W2118867014 @default.
- W2901162987 cites W2121070950 @default.
- W2901162987 cites W2175097057 @default.
- W2901162987 cites W2190225614 @default.
- W2901162987 cites W2413525353 @default.
- W2901162987 cites W2596924175 @default.
- W2901162987 cites W2605730976 @default.
- W2901162987 cites W2724217173 @default.
- W2901162987 cites W2728455196 @default.
- W2901162987 cites W2767523907 @default.
- W2901162987 cites W2801476843 @default.
- W2901162987 cites W3098924781 @default.
- W2901162987 cites W4231183969 @default.
- W2901162987 cites W4250503569 @default.
- W2901162987 cites W771428260 @default.
- W2901162987 cites W883434633 @default.
- W2901162987 cites W967258986 @default.
- W2901162987 doi "https://doi.org/10.1016/j.jhydrol.2018.11.052" @default.
- W2901162987 hasPublicationYear "2019" @default.
- W2901162987 type Work @default.
- W2901162987 sameAs 2901162987 @default.
- W2901162987 citedByCount "42" @default.
- W2901162987 countsByYear W29011629872019 @default.
- W2901162987 countsByYear W29011629872020 @default.
- W2901162987 countsByYear W29011629872021 @default.
- W2901162987 countsByYear W29011629872022 @default.
- W2901162987 countsByYear W29011629872023 @default.
- W2901162987 crossrefType "journal-article" @default.
- W2901162987 hasAuthorship W2901162987A5043935498 @default.
- W2901162987 hasAuthorship W2901162987A5056858070 @default.
- W2901162987 hasConcept C109718341 @default.
- W2901162987 hasConcept C119857082 @default.
- W2901162987 hasConcept C154945302 @default.
- W2901162987 hasConcept C154982244 @default.
- W2901162987 hasConcept C186108316 @default.
- W2901162987 hasConcept C195975749 @default.
- W2901162987 hasConcept C41008148 @default.
- W2901162987 hasConcept C50644808 @default.
- W2901162987 hasConcept C58166 @default.
- W2901162987 hasConcept C60908668 @default.
- W2901162987 hasConcept C85617194 @default.
- W2901162987 hasConcept C8880873 @default.
- W2901162987 hasConceptScore W2901162987C109718341 @default.
- W2901162987 hasConceptScore W2901162987C119857082 @default.
- W2901162987 hasConceptScore W2901162987C154945302 @default.
- W2901162987 hasConceptScore W2901162987C154982244 @default.
- W2901162987 hasConceptScore W2901162987C186108316 @default.
- W2901162987 hasConceptScore W2901162987C195975749 @default.
- W2901162987 hasConceptScore W2901162987C41008148 @default.
- W2901162987 hasConceptScore W2901162987C50644808 @default.
- W2901162987 hasConceptScore W2901162987C58166 @default.
- W2901162987 hasConceptScore W2901162987C60908668 @default.
- W2901162987 hasConceptScore W2901162987C85617194 @default.
- W2901162987 hasConceptScore W2901162987C8880873 @default.
- W2901162987 hasLocation W29011629871 @default.
- W2901162987 hasOpenAccess W2901162987 @default.
- W2901162987 hasPrimaryLocation W29011629871 @default.
- W2901162987 hasRelatedWork W2042389409 @default.
- W2901162987 hasRelatedWork W2305874107 @default.
- W2901162987 hasRelatedWork W2756359711 @default.
- W2901162987 hasRelatedWork W2758421209 @default.
- W2901162987 hasRelatedWork W2765248450 @default.
- W2901162987 hasRelatedWork W2800786350 @default.
- W2901162987 hasRelatedWork W2909831056 @default.
- W2901162987 hasRelatedWork W4297478335 @default.
- W2901162987 hasRelatedWork W4309047791 @default.
- W2901162987 hasRelatedWork W4362579294 @default.
- W2901162987 hasVolume "569" @default.
- W2901162987 isParatext "false" @default.
- W2901162987 isRetracted "false" @default.