Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901165057> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2901165057 abstract "Forecasting spatially correlated time series data is challenging because of the linear and non-linear dependencies in the temporal and spatial dimensions. Air quality forecasting is one canonical example of such tasks. Existing work, e.g., auto-regressive integrated moving average (ARIMA) and artificial neural network (ANN), either fails to model the non-linear temporal dependency or cannot effectively consider spatial relationships between multiple spatial time series data. In this paper, we present an approach for forecasting short-term PM2.5 concentrations using a deep learning model, the geo-context based diffusion convolutional recurrent neural network, GC-DCRNN. The model describes the spatial relationship by constructing a graph based on the similarity of the built environment between the locations of air quality sensors. The similarity is computed using the surrounding important geographic features regarding their impacts to air quality for each location (e.g., the area size of parks within a 1000-meter buffer, the number of factories within a 500-meter buffer). Also, the model captures the temporal dependency leveraging the sequence to sequence encoder-decoder architecture. We evaluate our model on two real-world air quality datasets and observe consistent improvement of 5%-10% over baseline approaches." @default.
- W2901165057 created "2018-11-29" @default.
- W2901165057 creator A5012068017 @default.
- W2901165057 creator A5027731521 @default.
- W2901165057 creator A5033175043 @default.
- W2901165057 creator A5034318005 @default.
- W2901165057 creator A5045786247 @default.
- W2901165057 creator A5056134483 @default.
- W2901165057 creator A5089617205 @default.
- W2901165057 date "2018-11-06" @default.
- W2901165057 modified "2023-10-16" @default.
- W2901165057 title "Exploiting spatiotemporal patterns for accurate air quality forecasting using deep learning" @default.
- W2901165057 cites W1619443888 @default.
- W2901165057 cites W1894414046 @default.
- W2901165057 cites W1969865391 @default.
- W2901165057 cites W1972324604 @default.
- W2901165057 cites W1985999417 @default.
- W2901165057 cites W1992978542 @default.
- W2901165057 cites W1995243424 @default.
- W2901165057 cites W1998958487 @default.
- W2901165057 cites W2003831290 @default.
- W2901165057 cites W2009438951 @default.
- W2901165057 cites W2013407702 @default.
- W2901165057 cites W2017388934 @default.
- W2901165057 cites W2033412785 @default.
- W2901165057 cites W2034446988 @default.
- W2901165057 cites W2040328014 @default.
- W2901165057 cites W2066796814 @default.
- W2901165057 cites W2067019813 @default.
- W2901165057 cites W2067186191 @default.
- W2901165057 cites W2103090698 @default.
- W2901165057 cites W2108082894 @default.
- W2901165057 cites W2129242535 @default.
- W2901165057 cites W2146848957 @default.
- W2901165057 cites W2157539394 @default.
- W2901165057 cites W2776048679 @default.
- W2901165057 cites W2806382623 @default.
- W2901165057 doi "https://doi.org/10.1145/3274895.3274907" @default.
- W2901165057 hasPublicationYear "2018" @default.
- W2901165057 type Work @default.
- W2901165057 sameAs 2901165057 @default.
- W2901165057 citedByCount "76" @default.
- W2901165057 countsByYear W29011650572019 @default.
- W2901165057 countsByYear W29011650572020 @default.
- W2901165057 countsByYear W29011650572021 @default.
- W2901165057 countsByYear W29011650572022 @default.
- W2901165057 countsByYear W29011650572023 @default.
- W2901165057 crossrefType "proceedings-article" @default.
- W2901165057 hasAuthorship W2901165057A5012068017 @default.
- W2901165057 hasAuthorship W2901165057A5027731521 @default.
- W2901165057 hasAuthorship W2901165057A5033175043 @default.
- W2901165057 hasAuthorship W2901165057A5034318005 @default.
- W2901165057 hasAuthorship W2901165057A5045786247 @default.
- W2901165057 hasAuthorship W2901165057A5056134483 @default.
- W2901165057 hasAuthorship W2901165057A5089617205 @default.
- W2901165057 hasConcept C108583219 @default.
- W2901165057 hasConcept C119857082 @default.
- W2901165057 hasConcept C124101348 @default.
- W2901165057 hasConcept C151406439 @default.
- W2901165057 hasConcept C153180895 @default.
- W2901165057 hasConcept C154945302 @default.
- W2901165057 hasConcept C166957645 @default.
- W2901165057 hasConcept C19768560 @default.
- W2901165057 hasConcept C205649164 @default.
- W2901165057 hasConcept C24338571 @default.
- W2901165057 hasConcept C2779343474 @default.
- W2901165057 hasConcept C41008148 @default.
- W2901165057 hasConcept C50644808 @default.
- W2901165057 hasConcept C81363708 @default.
- W2901165057 hasConceptScore W2901165057C108583219 @default.
- W2901165057 hasConceptScore W2901165057C119857082 @default.
- W2901165057 hasConceptScore W2901165057C124101348 @default.
- W2901165057 hasConceptScore W2901165057C151406439 @default.
- W2901165057 hasConceptScore W2901165057C153180895 @default.
- W2901165057 hasConceptScore W2901165057C154945302 @default.
- W2901165057 hasConceptScore W2901165057C166957645 @default.
- W2901165057 hasConceptScore W2901165057C19768560 @default.
- W2901165057 hasConceptScore W2901165057C205649164 @default.
- W2901165057 hasConceptScore W2901165057C24338571 @default.
- W2901165057 hasConceptScore W2901165057C2779343474 @default.
- W2901165057 hasConceptScore W2901165057C41008148 @default.
- W2901165057 hasConceptScore W2901165057C50644808 @default.
- W2901165057 hasConceptScore W2901165057C81363708 @default.
- W2901165057 hasLocation W29011650571 @default.
- W2901165057 hasOpenAccess W2901165057 @default.
- W2901165057 hasPrimaryLocation W29011650571 @default.
- W2901165057 hasRelatedWork W2731899572 @default.
- W2901165057 hasRelatedWork W2738221750 @default.
- W2901165057 hasRelatedWork W2773120646 @default.
- W2901165057 hasRelatedWork W2807839383 @default.
- W2901165057 hasRelatedWork W2920938200 @default.
- W2901165057 hasRelatedWork W3159901390 @default.
- W2901165057 hasRelatedWork W3164822677 @default.
- W2901165057 hasRelatedWork W3215138031 @default.
- W2901165057 hasRelatedWork W4200390792 @default.
- W2901165057 hasRelatedWork W4226246648 @default.
- W2901165057 isParatext "false" @default.
- W2901165057 isRetracted "false" @default.
- W2901165057 magId "2901165057" @default.
- W2901165057 workType "article" @default.