Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901165711> ?p ?o ?g. }
Showing items 1 to 44 of
44
with 100 items per page.
- W2901165711 abstract "We give a simple proof of the uniqueness of extensions of good sections for formal Brieskorn lattices, which can be used in a paper of C. Li, S. Li, and K. Saito for the proof of convergence in the non-quasihomogeneous polynomial case. Our proof uses an exponential operator argument as in their paper, although we do not use polyvector fields nor smooth differential forms. We also present an apparently simpler algorithm for an inductive calculation of the coefficients of primitive forms in the Brieskorn-Pham polynomial case. In a previous paper on the structure of Brieskorn lattices, there were some points which were not yet very clear, and we give some explanations about these, e.g. on the existence and the uniqueness of primitive forms associated with good sections, where we present some rather interesting examples. In Appendix we prove the uniqueness up to a nonzero constant multiple of the higher residue pairings in some formal setting which is different from the one in the main theorem. This is questioned by D. Shklyarov." @default.
- W2901165711 created "2018-11-29" @default.
- W2901165711 creator A5084183345 @default.
- W2901165711 date "2018-01-01" @default.
- W2901165711 modified "2023-09-25" @default.
- W2901165711 title "On the structure of Brieskorn lattices, II" @default.
- W2901165711 doi "https://doi.org/10.5427/jsing.2018.18l" @default.
- W2901165711 hasPublicationYear "2018" @default.
- W2901165711 type Work @default.
- W2901165711 sameAs 2901165711 @default.
- W2901165711 citedByCount "0" @default.
- W2901165711 crossrefType "journal-article" @default.
- W2901165711 hasAuthorship W2901165711A5084183345 @default.
- W2901165711 hasBestOaLocation W29011657112 @default.
- W2901165711 hasConcept C33923547 @default.
- W2901165711 hasConceptScore W2901165711C33923547 @default.
- W2901165711 hasLocation W29011657111 @default.
- W2901165711 hasLocation W29011657112 @default.
- W2901165711 hasOpenAccess W2901165711 @default.
- W2901165711 hasPrimaryLocation W29011657111 @default.
- W2901165711 hasRelatedWork W158349824 @default.
- W2901165711 hasRelatedWork W1977394356 @default.
- W2901165711 hasRelatedWork W2010637781 @default.
- W2901165711 hasRelatedWork W2026407273 @default.
- W2901165711 hasRelatedWork W2029041389 @default.
- W2901165711 hasRelatedWork W2044696620 @default.
- W2901165711 hasRelatedWork W2150606955 @default.
- W2901165711 hasRelatedWork W2183329983 @default.
- W2901165711 hasRelatedWork W2320513120 @default.
- W2901165711 hasRelatedWork W2327287139 @default.
- W2901165711 hasRelatedWork W2335648564 @default.
- W2901165711 hasRelatedWork W2413403562 @default.
- W2901165711 hasRelatedWork W2798952351 @default.
- W2901165711 hasRelatedWork W2810538510 @default.
- W2901165711 hasRelatedWork W2904359450 @default.
- W2901165711 hasRelatedWork W2951730573 @default.
- W2901165711 hasRelatedWork W2951894367 @default.
- W2901165711 hasRelatedWork W2964047154 @default.
- W2901165711 hasRelatedWork W2991062159 @default.
- W2901165711 hasRelatedWork W75766003 @default.
- W2901165711 isParatext "false" @default.
- W2901165711 isRetracted "false" @default.
- W2901165711 magId "2901165711" @default.
- W2901165711 workType "article" @default.