Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901176939> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2901176939 abstract "The constant growth in the numbers of Social Media users is a reality of the past few years. Companies, governments and researchers focus on extracting useful data from Social Media. One of the most important things we can extract from the messages transmitted from one user to another is the sentiment—positive, negative or neutral—regarding the subject of the conversation. There are many studies on how to classify these messages, but all of them need a huge amount of data already classified for training, data not available for Romanian language texts. We present a case study in which we use a Naive Bayes classifier trained on an English short text corpus on several thousand Romanian texts. We use Google Translate to adapt the Romanian texts and we validate the results by manually classifying some of them." @default.
- W2901176939 created "2018-11-29" @default.
- W2901176939 creator A5014066476 @default.
- W2901176939 creator A5036901295 @default.
- W2901176939 creator A5078920439 @default.
- W2901176939 creator A5079870236 @default.
- W2901176939 date "2018-01-01" @default.
- W2901176939 modified "2023-09-27" @default.
- W2901176939 title "Methodological Approach for Messages Classification on Twitter Within E-Government Area" @default.
- W2901176939 cites W1965600549 @default.
- W2901176939 cites W1979714823 @default.
- W2901176939 cites W2055605382 @default.
- W2901176939 cites W2081795963 @default.
- W2901176939 cites W2083492981 @default.
- W2901176939 cites W2470906225 @default.
- W2901176939 doi "https://doi.org/10.1007/978-3-030-01878-8_30" @default.
- W2901176939 hasPublicationYear "2018" @default.
- W2901176939 type Work @default.
- W2901176939 sameAs 2901176939 @default.
- W2901176939 citedByCount "0" @default.
- W2901176939 crossrefType "book-chapter" @default.
- W2901176939 hasAuthorship W2901176939A5014066476 @default.
- W2901176939 hasAuthorship W2901176939A5036901295 @default.
- W2901176939 hasAuthorship W2901176939A5078920439 @default.
- W2901176939 hasAuthorship W2901176939A5079870236 @default.
- W2901176939 hasConcept C120665830 @default.
- W2901176939 hasConcept C121332964 @default.
- W2901176939 hasConcept C12267149 @default.
- W2901176939 hasConcept C129400051 @default.
- W2901176939 hasConcept C136764020 @default.
- W2901176939 hasConcept C138885662 @default.
- W2901176939 hasConcept C154945302 @default.
- W2901176939 hasConcept C192209626 @default.
- W2901176939 hasConcept C204321447 @default.
- W2901176939 hasConcept C23123220 @default.
- W2901176939 hasConcept C2777200299 @default.
- W2901176939 hasConcept C41008148 @default.
- W2901176939 hasConcept C41895202 @default.
- W2901176939 hasConcept C518677369 @default.
- W2901176939 hasConcept C52001869 @default.
- W2901176939 hasConcept C95623464 @default.
- W2901176939 hasConceptScore W2901176939C120665830 @default.
- W2901176939 hasConceptScore W2901176939C121332964 @default.
- W2901176939 hasConceptScore W2901176939C12267149 @default.
- W2901176939 hasConceptScore W2901176939C129400051 @default.
- W2901176939 hasConceptScore W2901176939C136764020 @default.
- W2901176939 hasConceptScore W2901176939C138885662 @default.
- W2901176939 hasConceptScore W2901176939C154945302 @default.
- W2901176939 hasConceptScore W2901176939C192209626 @default.
- W2901176939 hasConceptScore W2901176939C204321447 @default.
- W2901176939 hasConceptScore W2901176939C23123220 @default.
- W2901176939 hasConceptScore W2901176939C2777200299 @default.
- W2901176939 hasConceptScore W2901176939C41008148 @default.
- W2901176939 hasConceptScore W2901176939C41895202 @default.
- W2901176939 hasConceptScore W2901176939C518677369 @default.
- W2901176939 hasConceptScore W2901176939C52001869 @default.
- W2901176939 hasConceptScore W2901176939C95623464 @default.
- W2901176939 hasLocation W29011769391 @default.
- W2901176939 hasOpenAccess W2901176939 @default.
- W2901176939 hasPrimaryLocation W29011769391 @default.
- W2901176939 hasRelatedWork W1538926071 @default.
- W2901176939 hasRelatedWork W1998257453 @default.
- W2901176939 hasRelatedWork W2146645312 @default.
- W2901176939 hasRelatedWork W2308466691 @default.
- W2901176939 hasRelatedWork W2313445661 @default.
- W2901176939 hasRelatedWork W2512153119 @default.
- W2901176939 hasRelatedWork W2547432656 @default.
- W2901176939 hasRelatedWork W2584432551 @default.
- W2901176939 hasRelatedWork W2787396463 @default.
- W2901176939 hasRelatedWork W2799118102 @default.
- W2901176939 hasRelatedWork W2884274929 @default.
- W2901176939 hasRelatedWork W2912781557 @default.
- W2901176939 hasRelatedWork W2962174846 @default.
- W2901176939 hasRelatedWork W2994796082 @default.
- W2901176939 hasRelatedWork W3034063709 @default.
- W2901176939 hasRelatedWork W3104651146 @default.
- W2901176939 hasRelatedWork W3144545234 @default.
- W2901176939 hasRelatedWork W3164493382 @default.
- W2901176939 hasRelatedWork W3186164146 @default.
- W2901176939 hasRelatedWork W3202836919 @default.
- W2901176939 isParatext "false" @default.
- W2901176939 isRetracted "false" @default.
- W2901176939 magId "2901176939" @default.
- W2901176939 workType "book-chapter" @default.