Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901216762> ?p ?o ?g. }
- W2901216762 endingPage "1" @default.
- W2901216762 startingPage "1" @default.
- W2901216762 abstract "We introduce an alternative hybrid swarm algorithm for image segmentation that employs multilevel thresholding techniques. For the hybridization, we have combined the whale optimization algorithm (WOA) and the particle swarm optimization (PSO). The proposed method is called WOAPSO, and it operates in a cooperative environment, where the initial population is divided into two subpopulations (the first subpopulation is assigned for WOA and the other is assigned for PSO). Then, the WOA and the PSO operate in parallel during the iterative process to update the solutions and the best solution is selected from the union of the updated subpopulations according to the objective function. Here, two objective functions are used, the Otsu’s method and the fuzzy entropy method. These functions evaluate the quality of the thresholds generated by the WOAPSO considering the variance and the entropy of the classes where the pixels are cataloged. The experimental results and comparisons provide evidence of the ability of the proposed WOAPSO algorithm to reduce the time complexity without affecting the accuracy of the solutions." @default.
- W2901216762 created "2018-11-29" @default.
- W2901216762 creator A5006876719 @default.
- W2901216762 creator A5078519359 @default.
- W2901216762 creator A5088658340 @default.
- W2901216762 date "2018-11-23" @default.
- W2901216762 modified "2023-09-27" @default.
- W2901216762 title "Image segmentation via multilevel thresholding using hybrid optimization algorithms" @default.
- W2901216762 cites W1614535104 @default.
- W2901216762 cites W1967748749 @default.
- W2901216762 cites W1969351979 @default.
- W2901216762 cites W1991797953 @default.
- W2901216762 cites W1996930148 @default.
- W2901216762 cites W2002870654 @default.
- W2901216762 cites W2003012800 @default.
- W2901216762 cites W2011890778 @default.
- W2901216762 cites W2024746652 @default.
- W2901216762 cites W2030161124 @default.
- W2901216762 cites W2037960630 @default.
- W2901216762 cites W2040121225 @default.
- W2901216762 cites W2060621627 @default.
- W2901216762 cites W2071315500 @default.
- W2901216762 cites W2082647352 @default.
- W2901216762 cites W2083970667 @default.
- W2901216762 cites W2089045143 @default.
- W2901216762 cites W2098477891 @default.
- W2901216762 cites W2120627761 @default.
- W2901216762 cites W2133059825 @default.
- W2901216762 cites W2133665775 @default.
- W2901216762 cites W2143001780 @default.
- W2901216762 cites W2152195021 @default.
- W2901216762 cites W2157259291 @default.
- W2901216762 cites W2183365153 @default.
- W2901216762 cites W2185313191 @default.
- W2901216762 cites W2232317135 @default.
- W2901216762 cites W2258223236 @default.
- W2901216762 cites W2290883490 @default.
- W2901216762 cites W2306115793 @default.
- W2901216762 cites W2321551206 @default.
- W2901216762 cites W2403162523 @default.
- W2901216762 cites W2463752386 @default.
- W2901216762 cites W2517312321 @default.
- W2901216762 cites W2550935363 @default.
- W2901216762 cites W2605810061 @default.
- W2901216762 cites W2613613071 @default.
- W2901216762 cites W2757238303 @default.
- W2901216762 cites W2767768852 @default.
- W2901216762 cites W2782826786 @default.
- W2901216762 cites W2789942135 @default.
- W2901216762 cites W2791498522 @default.
- W2901216762 cites W2801802177 @default.
- W2901216762 cites W2803021304 @default.
- W2901216762 cites W2807821935 @default.
- W2901216762 cites W2807873996 @default.
- W2901216762 cites W2808223626 @default.
- W2901216762 cites W2848179668 @default.
- W2901216762 cites W2883341185 @default.
- W2901216762 cites W2888248957 @default.
- W2901216762 cites W2889803518 @default.
- W2901216762 cites W603340033 @default.
- W2901216762 doi "https://doi.org/10.1117/1.jei.27.6.063008" @default.
- W2901216762 hasPublicationYear "2018" @default.
- W2901216762 type Work @default.
- W2901216762 sameAs 2901216762 @default.
- W2901216762 citedByCount "23" @default.
- W2901216762 countsByYear W29012167622019 @default.
- W2901216762 countsByYear W29012167622020 @default.
- W2901216762 countsByYear W29012167622021 @default.
- W2901216762 countsByYear W29012167622022 @default.
- W2901216762 countsByYear W29012167622023 @default.
- W2901216762 crossrefType "journal-article" @default.
- W2901216762 hasAuthorship W2901216762A5006876719 @default.
- W2901216762 hasAuthorship W2901216762A5078519359 @default.
- W2901216762 hasAuthorship W2901216762A5088658340 @default.
- W2901216762 hasConcept C106301342 @default.
- W2901216762 hasConcept C11413529 @default.
- W2901216762 hasConcept C115961682 @default.
- W2901216762 hasConcept C121332964 @default.
- W2901216762 hasConcept C124504099 @default.
- W2901216762 hasConcept C144024400 @default.
- W2901216762 hasConcept C149923435 @default.
- W2901216762 hasConcept C153180895 @default.
- W2901216762 hasConcept C154945302 @default.
- W2901216762 hasConcept C160633673 @default.
- W2901216762 hasConcept C191178318 @default.
- W2901216762 hasConcept C2908647359 @default.
- W2901216762 hasConcept C41008148 @default.
- W2901216762 hasConcept C62520636 @default.
- W2901216762 hasConcept C85617194 @default.
- W2901216762 hasConcept C89600930 @default.
- W2901216762 hasConceptScore W2901216762C106301342 @default.
- W2901216762 hasConceptScore W2901216762C11413529 @default.
- W2901216762 hasConceptScore W2901216762C115961682 @default.
- W2901216762 hasConceptScore W2901216762C121332964 @default.
- W2901216762 hasConceptScore W2901216762C124504099 @default.
- W2901216762 hasConceptScore W2901216762C144024400 @default.
- W2901216762 hasConceptScore W2901216762C149923435 @default.
- W2901216762 hasConceptScore W2901216762C153180895 @default.