Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901263722> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2901263722 abstract "The task of solar power forecasting becomes vital to ensure grid constancy and to enable an optimal unit commitment and cost-effective dispatch. Each year latest techniques and approaches appear to increase the exactitude of models with the important goal of reducing uncertainty in the predictions. The aim of the paper is to compile a big part of the knowledge about solar power forcing, to focus on the most recent advancements and future trends. Firstly, the inspiration to achieve an accurate forecast is presented with the analysis of the economic implications it may have. To address the problem superlative prediction models are rummaged by us using machine learning techniques. We make a comparison between multiple regression techniques for creating prediction models, along with linear least squares and support vector machines using multiple kernel functions. Predictions are analyzed by us in our experiments for the day ahead solar radiation data and it is shown that a machine learning approach yields feasible results for short-term solar prediction. The proposed model achieves a root mean square error improvement of around 29% compared to others proposed model except one." @default.
- W2901263722 created "2018-11-29" @default.
- W2901263722 creator A5039842740 @default.
- W2901263722 creator A5067854341 @default.
- W2901263722 date "2018-01-01" @default.
- W2901263722 modified "2023-10-16" @default.
- W2901263722 title "A Short Term Day-Ahead Solar Radiation Prediction Using Machine Learning Techniques" @default.
- W2901263722 cites W1749036211 @default.
- W2901263722 cites W1863264733 @default.
- W2901263722 cites W1909551488 @default.
- W2901263722 cites W1996372766 @default.
- W2901263722 cites W2013120098 @default.
- W2901263722 cites W2151131903 @default.
- W2901263722 cites W2156909104 @default.
- W2901263722 cites W2172064003 @default.
- W2901263722 cites W2173259274 @default.
- W2901263722 cites W2296521892 @default.
- W2901263722 cites W2599222389 @default.
- W2901263722 cites W120414401 @default.
- W2901263722 doi "https://doi.org/10.4172/2332-2594.1000238" @default.
- W2901263722 hasPublicationYear "2018" @default.
- W2901263722 type Work @default.
- W2901263722 sameAs 2901263722 @default.
- W2901263722 citedByCount "1" @default.
- W2901263722 countsByYear W29012637222019 @default.
- W2901263722 crossrefType "journal-article" @default.
- W2901263722 hasAuthorship W2901263722A5039842740 @default.
- W2901263722 hasAuthorship W2901263722A5067854341 @default.
- W2901263722 hasBestOaLocation W29012637221 @default.
- W2901263722 hasConcept C119857082 @default.
- W2901263722 hasConcept C121332964 @default.
- W2901263722 hasConcept C1276947 @default.
- W2901263722 hasConcept C153294291 @default.
- W2901263722 hasConcept C154945302 @default.
- W2901263722 hasConcept C41008148 @default.
- W2901263722 hasConcept C61797465 @default.
- W2901263722 hasConceptScore W2901263722C119857082 @default.
- W2901263722 hasConceptScore W2901263722C121332964 @default.
- W2901263722 hasConceptScore W2901263722C1276947 @default.
- W2901263722 hasConceptScore W2901263722C153294291 @default.
- W2901263722 hasConceptScore W2901263722C154945302 @default.
- W2901263722 hasConceptScore W2901263722C41008148 @default.
- W2901263722 hasConceptScore W2901263722C61797465 @default.
- W2901263722 hasIssue "03" @default.
- W2901263722 hasLocation W29012637221 @default.
- W2901263722 hasOpenAccess W2901263722 @default.
- W2901263722 hasPrimaryLocation W29012637221 @default.
- W2901263722 hasRelatedWork W2748952813 @default.
- W2901263722 hasRelatedWork W2961085424 @default.
- W2901263722 hasRelatedWork W3046775127 @default.
- W2901263722 hasRelatedWork W3107474891 @default.
- W2901263722 hasRelatedWork W4205958290 @default.
- W2901263722 hasRelatedWork W4285260836 @default.
- W2901263722 hasRelatedWork W4286629047 @default.
- W2901263722 hasRelatedWork W4306321456 @default.
- W2901263722 hasRelatedWork W4306674287 @default.
- W2901263722 hasRelatedWork W4224009465 @default.
- W2901263722 hasVolume "06" @default.
- W2901263722 isParatext "false" @default.
- W2901263722 isRetracted "false" @default.
- W2901263722 magId "2901263722" @default.
- W2901263722 workType "article" @default.