Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901368259> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2901368259 endingPage "139" @default.
- W2901368259 startingPage "133" @default.
- W2901368259 abstract "Abstract In recent years, generative model using neural network (GAN) has become an interesting field in machine learning. However, a study that investigates the effect of reducing training dataset for GAN model has not been conducted, while it is known that collecting images for training dataset requires a lot of human labor work. In this research, series of experiments with various amount of dataset have been conducted to get the idea of how small is the amount of dataset required for a GAN to work. It has been shown that the reduction to around fifty thousand images of dataset has gained a better result than a full amount dataset. Additionally, a new evaluation method for quantifying the performance of GAN network was also proposed, which can be considered later as another evaluation method for GAN framework." @default.
- W2901368259 created "2018-11-29" @default.
- W2901368259 creator A5002867406 @default.
- W2901368259 creator A5004775107 @default.
- W2901368259 date "2018-01-01" @default.
- W2901368259 modified "2023-10-12" @default.
- W2901368259 title "Training dataset reduction on generative adversarial network" @default.
- W2901368259 cites W1834627138 @default.
- W2901368259 cites W2752020298 @default.
- W2901368259 doi "https://doi.org/10.1016/j.procs.2018.10.513" @default.
- W2901368259 hasPublicationYear "2018" @default.
- W2901368259 type Work @default.
- W2901368259 sameAs 2901368259 @default.
- W2901368259 citedByCount "12" @default.
- W2901368259 countsByYear W29013682592019 @default.
- W2901368259 countsByYear W29013682592020 @default.
- W2901368259 countsByYear W29013682592021 @default.
- W2901368259 countsByYear W29013682592022 @default.
- W2901368259 countsByYear W29013682592023 @default.
- W2901368259 crossrefType "journal-article" @default.
- W2901368259 hasAuthorship W2901368259A5002867406 @default.
- W2901368259 hasAuthorship W2901368259A5004775107 @default.
- W2901368259 hasBestOaLocation W29013682591 @default.
- W2901368259 hasConcept C108583219 @default.
- W2901368259 hasConcept C111335779 @default.
- W2901368259 hasConcept C119857082 @default.
- W2901368259 hasConcept C121332964 @default.
- W2901368259 hasConcept C153294291 @default.
- W2901368259 hasConcept C154945302 @default.
- W2901368259 hasConcept C2524010 @default.
- W2901368259 hasConcept C2777211547 @default.
- W2901368259 hasConcept C2988773926 @default.
- W2901368259 hasConcept C33923547 @default.
- W2901368259 hasConcept C37736160 @default.
- W2901368259 hasConcept C39890363 @default.
- W2901368259 hasConcept C41008148 @default.
- W2901368259 hasConceptScore W2901368259C108583219 @default.
- W2901368259 hasConceptScore W2901368259C111335779 @default.
- W2901368259 hasConceptScore W2901368259C119857082 @default.
- W2901368259 hasConceptScore W2901368259C121332964 @default.
- W2901368259 hasConceptScore W2901368259C153294291 @default.
- W2901368259 hasConceptScore W2901368259C154945302 @default.
- W2901368259 hasConceptScore W2901368259C2524010 @default.
- W2901368259 hasConceptScore W2901368259C2777211547 @default.
- W2901368259 hasConceptScore W2901368259C2988773926 @default.
- W2901368259 hasConceptScore W2901368259C33923547 @default.
- W2901368259 hasConceptScore W2901368259C37736160 @default.
- W2901368259 hasConceptScore W2901368259C39890363 @default.
- W2901368259 hasConceptScore W2901368259C41008148 @default.
- W2901368259 hasLocation W29013682591 @default.
- W2901368259 hasOpenAccess W2901368259 @default.
- W2901368259 hasPrimaryLocation W29013682591 @default.
- W2901368259 hasRelatedWork W2901368259 @default.
- W2901368259 hasRelatedWork W2998996837 @default.
- W2901368259 hasRelatedWork W3007138654 @default.
- W2901368259 hasRelatedWork W3024390022 @default.
- W2901368259 hasRelatedWork W3156291593 @default.
- W2901368259 hasRelatedWork W3164279787 @default.
- W2901368259 hasRelatedWork W4296176982 @default.
- W2901368259 hasRelatedWork W4311460979 @default.
- W2901368259 hasRelatedWork W4313479464 @default.
- W2901368259 hasRelatedWork W4316035501 @default.
- W2901368259 hasVolume "144" @default.
- W2901368259 isParatext "false" @default.
- W2901368259 isRetracted "false" @default.
- W2901368259 magId "2901368259" @default.
- W2901368259 workType "article" @default.