Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901383630> ?p ?o ?g. }
- W2901383630 endingPage "1026" @default.
- W2901383630 startingPage "1007" @default.
- W2901383630 abstract "Summary Reservoir model parameters generally have very large uncertainty ranges, and need to be calibrated by history matching (HM) available production data. Properly assessing the uncertainty of production forecasts (e.g., with an ensemble of calibrated models that are conditioned to production data) has a direct impact on business decision making. It requires performing numerous reservoir simulations on a distributed computing environment. Because of the current low-oil-price environment, it is demanding to reduce the computational cost of generating multiple realizations of history-matched models without compromising forecasting quality. To solve this challenge, a novel and more efficient optimization method (referred to as SVR-DGN) is proposed in this paper, by replacing the less accurate linear proxy of the distributed Gauss-Newton (DGN) optimization method (referred to as L-DGN) with a more accurate response-surface model of support vector regression (SVR). Resembling L-DGN, the proposed SVR-DGN optimization method can be applied to find multiple local minima of the objective function in parallel. In each iteration, SVR-DGN proposes an ensemble of search points or reservoir-simulation models, and the flow responses of these reservoir models are simulated on high-performance-computing (HPC) clusters concurrently. All successfully simulated cases are recorded in a training data set. Then, an SVR proxy is constructed for each simulated response using all training data points available in the training data set. Finally, the sensitivity matrix at any point can be calculated analytically by differentiating the SVR models. SVR-DGN computes more-accurate sensitivity matrices, proposes better search points, and converges faster than L-DGN. The quality of the SVR proxy is validated with a toy problem. The proposed method is applied to a real field HM example of a Permian liquid-rich shale reservoir. The uncertain parameters include reservoir static properties, hydraulic-fracture properties, and parameters defining relative permeability curves. The performance of the proposed SVR-DGN optimization method is compared with the L-DGN optimizer and the hybrid Gauss-Newton with a direct-pattern-search (GN-DPS) optimizer, using the same real field example. Our numerical tests indicate that the SVR-DGN optimizer can find better solutions with smaller values of the objective function and with a less computational cost (approximately one-third of L-DGN and 1/30 of GN-DPS). Finally, the proposed method is applied to generate multiple conditional realizations for the uncertainty quantification of production forecasts." @default.
- W2901383630 created "2018-11-29" @default.
- W2901383630 creator A5000888071 @default.
- W2901383630 creator A5012441761 @default.
- W2901383630 creator A5046296681 @default.
- W2901383630 creator A5056255838 @default.
- W2901383630 creator A5058725877 @default.
- W2901383630 creator A5074075949 @default.
- W2901383630 date "2018-11-01" @default.
- W2901383630 modified "2023-10-16" @default.
- W2901383630 title "Integration of Support Vector Regression With Distributed Gauss-Newton Optimization Method and Its Applications to the Uncertainty Assessment of Unconventional Assets" @default.
- W2901383630 cites W1494614346 @default.
- W2901383630 cites W1964357740 @default.
- W2901383630 cites W1969597639 @default.
- W2901383630 cites W1992036378 @default.
- W2901383630 cites W2003269858 @default.
- W2901383630 cites W2004361303 @default.
- W2901383630 cites W2011328014 @default.
- W2901383630 cites W2014787281 @default.
- W2901383630 cites W2015152247 @default.
- W2901383630 cites W2028142523 @default.
- W2901383630 cites W2039402388 @default.
- W2901383630 cites W2045208534 @default.
- W2901383630 cites W2060586398 @default.
- W2901383630 cites W2060717708 @default.
- W2901383630 cites W2072003348 @default.
- W2901383630 cites W2082212239 @default.
- W2901383630 cites W2261338067 @default.
- W2901383630 cites W2509534097 @default.
- W2901383630 cites W2586803467 @default.
- W2901383630 cites W2587472687 @default.
- W2901383630 cites W2592115969 @default.
- W2901383630 cites W2763536882 @default.
- W2901383630 cites W3014711440 @default.
- W2901383630 cites W4239510810 @default.
- W2901383630 doi "https://doi.org/10.2118/191373-pa" @default.
- W2901383630 hasPublicationYear "2018" @default.
- W2901383630 type Work @default.
- W2901383630 sameAs 2901383630 @default.
- W2901383630 citedByCount "26" @default.
- W2901383630 countsByYear W29013836302019 @default.
- W2901383630 countsByYear W29013836302020 @default.
- W2901383630 countsByYear W29013836302021 @default.
- W2901383630 countsByYear W29013836302022 @default.
- W2901383630 countsByYear W29013836302023 @default.
- W2901383630 crossrefType "journal-article" @default.
- W2901383630 hasAuthorship W2901383630A5000888071 @default.
- W2901383630 hasAuthorship W2901383630A5012441761 @default.
- W2901383630 hasAuthorship W2901383630A5046296681 @default.
- W2901383630 hasAuthorship W2901383630A5056255838 @default.
- W2901383630 hasAuthorship W2901383630A5058725877 @default.
- W2901383630 hasAuthorship W2901383630A5074075949 @default.
- W2901383630 hasConcept C11413529 @default.
- W2901383630 hasConcept C119857082 @default.
- W2901383630 hasConcept C12267149 @default.
- W2901383630 hasConcept C124101348 @default.
- W2901383630 hasConcept C126255220 @default.
- W2901383630 hasConcept C127413603 @default.
- W2901383630 hasConcept C154945302 @default.
- W2901383630 hasConcept C160920958 @default.
- W2901383630 hasConcept C21200559 @default.
- W2901383630 hasConcept C24326235 @default.
- W2901383630 hasConcept C2778668878 @default.
- W2901383630 hasConcept C33923547 @default.
- W2901383630 hasConcept C41008148 @default.
- W2901383630 hasConcept C58489278 @default.
- W2901383630 hasConcept C78762247 @default.
- W2901383630 hasConceptScore W2901383630C11413529 @default.
- W2901383630 hasConceptScore W2901383630C119857082 @default.
- W2901383630 hasConceptScore W2901383630C12267149 @default.
- W2901383630 hasConceptScore W2901383630C124101348 @default.
- W2901383630 hasConceptScore W2901383630C126255220 @default.
- W2901383630 hasConceptScore W2901383630C127413603 @default.
- W2901383630 hasConceptScore W2901383630C154945302 @default.
- W2901383630 hasConceptScore W2901383630C160920958 @default.
- W2901383630 hasConceptScore W2901383630C21200559 @default.
- W2901383630 hasConceptScore W2901383630C24326235 @default.
- W2901383630 hasConceptScore W2901383630C2778668878 @default.
- W2901383630 hasConceptScore W2901383630C33923547 @default.
- W2901383630 hasConceptScore W2901383630C41008148 @default.
- W2901383630 hasConceptScore W2901383630C58489278 @default.
- W2901383630 hasConceptScore W2901383630C78762247 @default.
- W2901383630 hasIssue "04" @default.
- W2901383630 hasLocation W29013836301 @default.
- W2901383630 hasOpenAccess W2901383630 @default.
- W2901383630 hasPrimaryLocation W29013836301 @default.
- W2901383630 hasRelatedWork W1996608357 @default.
- W2901383630 hasRelatedWork W2007548761 @default.
- W2901383630 hasRelatedWork W2161264592 @default.
- W2901383630 hasRelatedWork W2168113089 @default.
- W2901383630 hasRelatedWork W2172289703 @default.
- W2901383630 hasRelatedWork W2351942740 @default.
- W2901383630 hasRelatedWork W2355927362 @default.
- W2901383630 hasRelatedWork W2381199183 @default.
- W2901383630 hasRelatedWork W4225135474 @default.
- W2901383630 hasRelatedWork W4320060068 @default.
- W2901383630 hasVolume "21" @default.
- W2901383630 isParatext "false" @default.