Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901411193> ?p ?o ?g. }
- W2901411193 endingPage "780" @default.
- W2901411193 startingPage "773" @default.
- W2901411193 abstract "Artificial intelligence (AI) uses personified knowledge and learns from the solutions it produces to address not only specific but also complex problems. Remarkable improvements in computational power coupled with advancements in AI technology could be utilised to revolutionise the drug development process. At present, the pharmaceutical industry is facing challenges in sustaining their drug development programmes because of increased R&D costs and reduced efficiency. In this review, we discuss the major causes of attrition rates in new drug approvals, the possible ways that AI can improve the efficiency of the drug development process and collaboration of pharmaceutical industry giants with AI-powered drug discovery firms." @default.
- W2901411193 created "2018-11-29" @default.
- W2901411193 creator A5014523412 @default.
- W2901411193 creator A5059972450 @default.
- W2901411193 date "2019-03-01" @default.
- W2901411193 modified "2023-10-03" @default.
- W2901411193 title "Artificial intelligence in drug development: present status and future prospects" @default.
- W2901411193 cites W1482703252 @default.
- W2901411193 cites W1500036797 @default.
- W2901411193 cites W1580537016 @default.
- W2901411193 cites W1895993106 @default.
- W2901411193 cites W1986483795 @default.
- W2901411193 cites W1990840149 @default.
- W2901411193 cites W2010546163 @default.
- W2901411193 cites W2024230958 @default.
- W2901411193 cites W2028279608 @default.
- W2901411193 cites W2107785892 @default.
- W2901411193 cites W2113951828 @default.
- W2901411193 cites W2117825133 @default.
- W2901411193 cites W2123084387 @default.
- W2901411193 cites W2127587566 @default.
- W2901411193 cites W2129860849 @default.
- W2901411193 cites W2137077888 @default.
- W2901411193 cites W2145769384 @default.
- W2901411193 cites W2151461462 @default.
- W2901411193 cites W2152477689 @default.
- W2901411193 cites W2161782568 @default.
- W2901411193 cites W2175130792 @default.
- W2901411193 cites W2189911347 @default.
- W2901411193 cites W2214291252 @default.
- W2901411193 cites W2237633597 @default.
- W2901411193 cites W2256119113 @default.
- W2901411193 cites W2306570595 @default.
- W2901411193 cites W2375821550 @default.
- W2901411193 cites W2396663079 @default.
- W2901411193 cites W2397757171 @default.
- W2901411193 cites W2461620095 @default.
- W2901411193 cites W2520714212 @default.
- W2901411193 cites W2556070101 @default.
- W2901411193 cites W2560741024 @default.
- W2901411193 cites W2564717375 @default.
- W2901411193 cites W2576404523 @default.
- W2901411193 cites W2578240541 @default.
- W2901411193 cites W2590881186 @default.
- W2901411193 cites W2593909786 @default.
- W2901411193 cites W2596192549 @default.
- W2901411193 cites W2604186734 @default.
- W2901411193 cites W2604527271 @default.
- W2901411193 cites W2604632900 @default.
- W2901411193 cites W2613716520 @default.
- W2901411193 cites W2615117870 @default.
- W2901411193 cites W2617669016 @default.
- W2901411193 cites W2641342067 @default.
- W2901411193 cites W2664267452 @default.
- W2901411193 cites W2736137960 @default.
- W2901411193 cites W2741016737 @default.
- W2901411193 cites W2742430148 @default.
- W2901411193 cites W2747440934 @default.
- W2901411193 cites W2747592475 @default.
- W2901411193 cites W2753633147 @default.
- W2901411193 cites W2759511880 @default.
- W2901411193 cites W2761714660 @default.
- W2901411193 cites W2767711842 @default.
- W2901411193 cites W2769604672 @default.
- W2901411193 cites W2770849724 @default.
- W2901411193 cites W2775714759 @default.
- W2901411193 cites W2784270883 @default.
- W2901411193 cites W2790808809 @default.
- W2901411193 cites W2800307432 @default.
- W2901411193 cites W2802200505 @default.
- W2901411193 cites W2804841028 @default.
- W2901411193 cites W2806834952 @default.
- W2901411193 cites W2822962393 @default.
- W2901411193 cites W2883307410 @default.
- W2901411193 cites W4237130412 @default.
- W2901411193 doi "https://doi.org/10.1016/j.drudis.2018.11.014" @default.
- W2901411193 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30472429" @default.
- W2901411193 hasPublicationYear "2019" @default.
- W2901411193 type Work @default.
- W2901411193 sameAs 2901411193 @default.
- W2901411193 citedByCount "337" @default.
- W2901411193 countsByYear W29014111932019 @default.
- W2901411193 countsByYear W29014111932020 @default.
- W2901411193 countsByYear W29014111932021 @default.
- W2901411193 countsByYear W29014111932022 @default.
- W2901411193 countsByYear W29014111932023 @default.
- W2901411193 crossrefType "journal-article" @default.
- W2901411193 hasAuthorship W2901411193A5014523412 @default.
- W2901411193 hasAuthorship W2901411193A5059972450 @default.
- W2901411193 hasConcept C111919701 @default.
- W2901411193 hasConcept C112930515 @default.
- W2901411193 hasConcept C144133560 @default.
- W2901411193 hasConcept C195094911 @default.
- W2901411193 hasConcept C199343813 @default.
- W2901411193 hasConcept C2522767166 @default.
- W2901411193 hasConcept C2779652045 @default.
- W2901411193 hasConcept C2780035454 @default.
- W2901411193 hasConcept C2780553607 @default.