Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901412188> ?p ?o ?g. }
- W2901412188 endingPage "2083" @default.
- W2901412188 startingPage "2073" @default.
- W2901412188 abstract "Covariance matrix adaptation evolution strategy (CMA-ES) is a successful gradient-free optimization algorithm. Yet, it can hardly scale to handle high-dimensional problems. In this paper, we propose a fast variant of CMA-ES (Fast CMA-ES) to handle large-scale black-box optimization problems. We approximate the covariance matrix by a low-rank matrix with a few vectors and use two of them to generate each new solution. The algorithm achieves linear internal complexity on the dimension of search space. We illustrate that the covariance matrix of the underlying distribution can be considered as an ensemble of simple models constructed by two vectors. We experimentally investigate the algorithm's behaviors and performances. It is more efficient than the CMA-ES in terms of running time. It outperforms or performs comparatively to the variant limited memory CMA-ES on large-scale problems. Finally, we evaluate the algorithm's performance with a restart strategy on the CEC'2010 large-scale global optimization benchmarks, and it shows remarkable performance and outperforms the large-scale variants of the CMA-ES." @default.
- W2901412188 created "2018-11-29" @default.
- W2901412188 creator A5000546219 @default.
- W2901412188 creator A5024948361 @default.
- W2901412188 creator A5031170152 @default.
- W2901412188 creator A5068670330 @default.
- W2901412188 date "2020-05-01" @default.
- W2901412188 modified "2023-10-02" @default.
- W2901412188 title "Fast Covariance Matrix Adaptation for Large-Scale Black-Box Optimization" @default.
- W2901412188 cites W102487131 @default.
- W2901412188 cites W1503296932 @default.
- W2901412188 cites W1555689267 @default.
- W2901412188 cites W1567473651 @default.
- W2901412188 cites W1574994635 @default.
- W2901412188 cites W1579744901 @default.
- W2901412188 cites W1605438009 @default.
- W2901412188 cites W1971514372 @default.
- W2901412188 cites W1983947028 @default.
- W2901412188 cites W2003066178 @default.
- W2901412188 cites W2024372894 @default.
- W2901412188 cites W2034786972 @default.
- W2901412188 cites W2036922316 @default.
- W2901412188 cites W2045050140 @default.
- W2901412188 cites W2057625613 @default.
- W2901412188 cites W2069816717 @default.
- W2901412188 cites W2081524587 @default.
- W2901412188 cites W2104604585 @default.
- W2901412188 cites W2105014696 @default.
- W2901412188 cites W2112036188 @default.
- W2901412188 cites W2116990014 @default.
- W2901412188 cites W2121429049 @default.
- W2901412188 cites W2131872520 @default.
- W2901412188 cites W2138537392 @default.
- W2901412188 cites W2140671219 @default.
- W2901412188 cites W2154249783 @default.
- W2901412188 cites W2160615157 @default.
- W2901412188 cites W2269421492 @default.
- W2901412188 cites W2271253903 @default.
- W2901412188 cites W2413634576 @default.
- W2901412188 cites W2477744635 @default.
- W2901412188 cites W2509569228 @default.
- W2901412188 cites W2558027347 @default.
- W2901412188 cites W2592891920 @default.
- W2901412188 cites W2608705546 @default.
- W2901412188 cites W2766293931 @default.
- W2901412188 cites W2769744156 @default.
- W2901412188 cites W2845268560 @default.
- W2901412188 cites W2962757795 @default.
- W2901412188 cites W4247067162 @default.
- W2901412188 cites W4327521327 @default.
- W2901412188 doi "https://doi.org/10.1109/tcyb.2018.2877641" @default.
- W2901412188 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30442627" @default.
- W2901412188 hasPublicationYear "2020" @default.
- W2901412188 type Work @default.
- W2901412188 sameAs 2901412188 @default.
- W2901412188 citedByCount "32" @default.
- W2901412188 countsByYear W29014121882018 @default.
- W2901412188 countsByYear W29014121882019 @default.
- W2901412188 countsByYear W29014121882020 @default.
- W2901412188 countsByYear W29014121882021 @default.
- W2901412188 countsByYear W29014121882022 @default.
- W2901412188 countsByYear W29014121882023 @default.
- W2901412188 crossrefType "journal-article" @default.
- W2901412188 hasAuthorship W2901412188A5000546219 @default.
- W2901412188 hasAuthorship W2901412188A5024948361 @default.
- W2901412188 hasAuthorship W2901412188A5031170152 @default.
- W2901412188 hasAuthorship W2901412188A5068670330 @default.
- W2901412188 hasConcept C105795698 @default.
- W2901412188 hasConcept C106487976 @default.
- W2901412188 hasConcept C11413529 @default.
- W2901412188 hasConcept C114614502 @default.
- W2901412188 hasConcept C121332964 @default.
- W2901412188 hasConcept C126255220 @default.
- W2901412188 hasConcept C137836250 @default.
- W2901412188 hasConcept C154945302 @default.
- W2901412188 hasConcept C159149176 @default.
- W2901412188 hasConcept C159985019 @default.
- W2901412188 hasConcept C164226766 @default.
- W2901412188 hasConcept C178650346 @default.
- W2901412188 hasConcept C180877172 @default.
- W2901412188 hasConcept C185142706 @default.
- W2901412188 hasConcept C192562407 @default.
- W2901412188 hasConcept C202444582 @default.
- W2901412188 hasConcept C205555498 @default.
- W2901412188 hasConcept C207002847 @default.
- W2901412188 hasConcept C2778755073 @default.
- W2901412188 hasConcept C33676613 @default.
- W2901412188 hasConcept C33923547 @default.
- W2901412188 hasConcept C41008148 @default.
- W2901412188 hasConcept C62520636 @default.
- W2901412188 hasConcept C94966114 @default.
- W2901412188 hasConceptScore W2901412188C105795698 @default.
- W2901412188 hasConceptScore W2901412188C106487976 @default.
- W2901412188 hasConceptScore W2901412188C11413529 @default.
- W2901412188 hasConceptScore W2901412188C114614502 @default.
- W2901412188 hasConceptScore W2901412188C121332964 @default.
- W2901412188 hasConceptScore W2901412188C126255220 @default.
- W2901412188 hasConceptScore W2901412188C137836250 @default.