Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901412863> ?p ?o ?g. }
- W2901412863 abstract "In the biomedical domain, the lack of sharable datasets often limit the possibility of developing natural language processing systems, especially dialogue applications and natural language understanding models. To overcome this issue, we explore data generation using templates and terminologies and data augmentation approaches. Namely, we report our experiments using paraphrasing and word representations learned on a large EHR corpus with Fasttext and ELMo, to learn a NLU model without any available dataset. We evaluate on a NLU task of natural language queries in EHRs divided in slot-filling and intent classification sub-tasks. On the slot-filling task, we obtain a F-score of 0.76 with the ELMo representation; and on the classification task, a mean F-score of 0.71. Our results show that this method could be used to develop a baseline system." @default.
- W2901412863 created "2018-11-29" @default.
- W2901412863 creator A5001616788 @default.
- W2901412863 creator A5002976747 @default.
- W2901412863 creator A5037397269 @default.
- W2901412863 creator A5085491820 @default.
- W2901412863 date "2018-11-23" @default.
- W2901412863 modified "2023-09-27" @default.
- W2901412863 title "Natural language understanding for task oriented dialog in the biomedical domain in a low resources context." @default.
- W2901412863 cites W1525961042 @default.
- W2901412863 cites W1975244201 @default.
- W2901412863 cites W2061433145 @default.
- W2901412863 cites W2064675550 @default.
- W2901412863 cites W2147880316 @default.
- W2901412863 cites W2204140279 @default.
- W2901412863 cites W2251044566 @default.
- W2901412863 cites W2296283641 @default.
- W2901412863 cites W2403702038 @default.
- W2901412863 cites W2748868227 @default.
- W2901412863 cites W2787560479 @default.
- W2901412863 cites W2798139452 @default.
- W2901412863 cites W2843010082 @default.
- W2901412863 cites W2940484670 @default.
- W2901412863 cites W2952566282 @default.
- W2901412863 cites W2963923670 @default.
- W2901412863 cites W648947103 @default.
- W2901412863 hasPublicationYear "2018" @default.
- W2901412863 type Work @default.
- W2901412863 sameAs 2901412863 @default.
- W2901412863 citedByCount "4" @default.
- W2901412863 countsByYear W29014128632019 @default.
- W2901412863 countsByYear W29014128632020 @default.
- W2901412863 countsByYear W29014128632021 @default.
- W2901412863 crossrefType "posted-content" @default.
- W2901412863 hasAuthorship W2901412863A5001616788 @default.
- W2901412863 hasAuthorship W2901412863A5002976747 @default.
- W2901412863 hasAuthorship W2901412863A5037397269 @default.
- W2901412863 hasAuthorship W2901412863A5085491820 @default.
- W2901412863 hasConcept C111368507 @default.
- W2901412863 hasConcept C12725497 @default.
- W2901412863 hasConcept C127313418 @default.
- W2901412863 hasConcept C134306372 @default.
- W2901412863 hasConcept C136764020 @default.
- W2901412863 hasConcept C137293760 @default.
- W2901412863 hasConcept C138885662 @default.
- W2901412863 hasConcept C151730666 @default.
- W2901412863 hasConcept C154945302 @default.
- W2901412863 hasConcept C162324750 @default.
- W2901412863 hasConcept C173853756 @default.
- W2901412863 hasConcept C17744445 @default.
- W2901412863 hasConcept C187736073 @default.
- W2901412863 hasConcept C195324797 @default.
- W2901412863 hasConcept C199539241 @default.
- W2901412863 hasConcept C204321447 @default.
- W2901412863 hasConcept C2776359362 @default.
- W2901412863 hasConcept C2779343474 @default.
- W2901412863 hasConcept C2779439875 @default.
- W2901412863 hasConcept C2780451532 @default.
- W2901412863 hasConcept C2993776861 @default.
- W2901412863 hasConcept C33923547 @default.
- W2901412863 hasConcept C36503486 @default.
- W2901412863 hasConcept C41008148 @default.
- W2901412863 hasConcept C41895202 @default.
- W2901412863 hasConcept C44291984 @default.
- W2901412863 hasConcept C86803240 @default.
- W2901412863 hasConcept C90805587 @default.
- W2901412863 hasConcept C94625758 @default.
- W2901412863 hasConceptScore W2901412863C111368507 @default.
- W2901412863 hasConceptScore W2901412863C12725497 @default.
- W2901412863 hasConceptScore W2901412863C127313418 @default.
- W2901412863 hasConceptScore W2901412863C134306372 @default.
- W2901412863 hasConceptScore W2901412863C136764020 @default.
- W2901412863 hasConceptScore W2901412863C137293760 @default.
- W2901412863 hasConceptScore W2901412863C138885662 @default.
- W2901412863 hasConceptScore W2901412863C151730666 @default.
- W2901412863 hasConceptScore W2901412863C154945302 @default.
- W2901412863 hasConceptScore W2901412863C162324750 @default.
- W2901412863 hasConceptScore W2901412863C173853756 @default.
- W2901412863 hasConceptScore W2901412863C17744445 @default.
- W2901412863 hasConceptScore W2901412863C187736073 @default.
- W2901412863 hasConceptScore W2901412863C195324797 @default.
- W2901412863 hasConceptScore W2901412863C199539241 @default.
- W2901412863 hasConceptScore W2901412863C204321447 @default.
- W2901412863 hasConceptScore W2901412863C2776359362 @default.
- W2901412863 hasConceptScore W2901412863C2779343474 @default.
- W2901412863 hasConceptScore W2901412863C2779439875 @default.
- W2901412863 hasConceptScore W2901412863C2780451532 @default.
- W2901412863 hasConceptScore W2901412863C2993776861 @default.
- W2901412863 hasConceptScore W2901412863C33923547 @default.
- W2901412863 hasConceptScore W2901412863C36503486 @default.
- W2901412863 hasConceptScore W2901412863C41008148 @default.
- W2901412863 hasConceptScore W2901412863C41895202 @default.
- W2901412863 hasConceptScore W2901412863C44291984 @default.
- W2901412863 hasConceptScore W2901412863C86803240 @default.
- W2901412863 hasConceptScore W2901412863C90805587 @default.
- W2901412863 hasConceptScore W2901412863C94625758 @default.
- W2901412863 hasLocation W29014128631 @default.
- W2901412863 hasOpenAccess W2901412863 @default.
- W2901412863 hasPrimaryLocation W29014128631 @default.
- W2901412863 hasRelatedWork W1978467223 @default.