Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901418248> ?p ?o ?g. }
- W2901418248 endingPage "207" @default.
- W2901418248 startingPage "195" @default.
- W2901418248 abstract "Functional Data Analysis (FDA) is devoted to the study of data which are functions. Support Vector Machine (SVM) is a benchmark tool for classification, in particular, of functional data. SVM is frequently used with a kernel (e.g.: Gaussian) which involves a scalar bandwidth parameter. In this paper, we propose to use kernels with functional bandwidths. In this way, accuracy may be improved, and the time intervals critical for classification are identified. Tuning the functional parameters of the new kernel is a challenging task expressed as a continuous optimization problem, solved by means of a heuristic. Our experiments with benchmark data sets show the advantages of using functional parameters and the effectiveness of our approach." @default.
- W2901418248 created "2018-11-29" @default.
- W2901418248 creator A5053318934 @default.
- W2901418248 creator A5074052136 @default.
- W2901418248 creator A5080912553 @default.
- W2901418248 creator A5086385228 @default.
- W2901418248 date "2019-05-01" @default.
- W2901418248 modified "2023-10-16" @default.
- W2901418248 title "Functional-bandwidth kernel for Support Vector Machine with Functional Data: An alternating optimization algorithm" @default.
- W2901418248 cites W1480376833 @default.
- W2901418248 cites W1596717185 @default.
- W2901418248 cites W16794263 @default.
- W2901418248 cites W1925427981 @default.
- W2901418248 cites W1974013939 @default.
- W2901418248 cites W1985195207 @default.
- W2901418248 cites W2027655461 @default.
- W2901418248 cites W2032395696 @default.
- W2901418248 cites W2032708784 @default.
- W2901418248 cites W2042701178 @default.
- W2901418248 cites W2048021008 @default.
- W2901418248 cites W2055028010 @default.
- W2901418248 cites W2062592876 @default.
- W2901418248 cites W2064850188 @default.
- W2901418248 cites W2079815272 @default.
- W2901418248 cites W2083397249 @default.
- W2901418248 cites W2085570173 @default.
- W2901418248 cites W2088134541 @default.
- W2901418248 cites W2094150678 @default.
- W2901418248 cites W2095518865 @default.
- W2901418248 cites W2101769535 @default.
- W2901418248 cites W2109820980 @default.
- W2901418248 cites W2118286367 @default.
- W2901418248 cites W2123160547 @default.
- W2901418248 cites W2124659975 @default.
- W2901418248 cites W2125235227 @default.
- W2901418248 cites W2126120145 @default.
- W2901418248 cites W2130167132 @default.
- W2901418248 cites W2139141177 @default.
- W2901418248 cites W2142635246 @default.
- W2901418248 cites W2147261011 @default.
- W2901418248 cites W2162801391 @default.
- W2901418248 cites W2165872689 @default.
- W2901418248 cites W2168111746 @default.
- W2901418248 cites W2168175751 @default.
- W2901418248 cites W2169171650 @default.
- W2901418248 cites W2200994544 @default.
- W2901418248 cites W2412604951 @default.
- W2901418248 cites W2530473308 @default.
- W2901418248 cites W2593370983 @default.
- W2901418248 cites W2773381949 @default.
- W2901418248 cites W3101749733 @default.
- W2901418248 cites W3106063097 @default.
- W2901418248 cites W4239510810 @default.
- W2901418248 doi "https://doi.org/10.1016/j.ejor.2018.11.024" @default.
- W2901418248 hasPublicationYear "2019" @default.
- W2901418248 type Work @default.
- W2901418248 sameAs 2901418248 @default.
- W2901418248 citedByCount "14" @default.
- W2901418248 countsByYear W29014182482020 @default.
- W2901418248 countsByYear W29014182482021 @default.
- W2901418248 crossrefType "journal-article" @default.
- W2901418248 hasAuthorship W2901418248A5053318934 @default.
- W2901418248 hasAuthorship W2901418248A5074052136 @default.
- W2901418248 hasAuthorship W2901418248A5080912553 @default.
- W2901418248 hasAuthorship W2901418248A5086385228 @default.
- W2901418248 hasBestOaLocation W29014182482 @default.
- W2901418248 hasConcept C11413529 @default.
- W2901418248 hasConcept C114614502 @default.
- W2901418248 hasConcept C119857082 @default.
- W2901418248 hasConcept C121332964 @default.
- W2901418248 hasConcept C122280245 @default.
- W2901418248 hasConcept C12267149 @default.
- W2901418248 hasConcept C13280743 @default.
- W2901418248 hasConcept C14948415 @default.
- W2901418248 hasConcept C153180895 @default.
- W2901418248 hasConcept C154945302 @default.
- W2901418248 hasConcept C163716315 @default.
- W2901418248 hasConcept C185798385 @default.
- W2901418248 hasConcept C205649164 @default.
- W2901418248 hasConcept C2776257435 @default.
- W2901418248 hasConcept C31258907 @default.
- W2901418248 hasConcept C33923547 @default.
- W2901418248 hasConcept C41008148 @default.
- W2901418248 hasConcept C62520636 @default.
- W2901418248 hasConcept C7218915 @default.
- W2901418248 hasConcept C74193536 @default.
- W2901418248 hasConcept C75866337 @default.
- W2901418248 hasConceptScore W2901418248C11413529 @default.
- W2901418248 hasConceptScore W2901418248C114614502 @default.
- W2901418248 hasConceptScore W2901418248C119857082 @default.
- W2901418248 hasConceptScore W2901418248C121332964 @default.
- W2901418248 hasConceptScore W2901418248C122280245 @default.
- W2901418248 hasConceptScore W2901418248C12267149 @default.
- W2901418248 hasConceptScore W2901418248C13280743 @default.
- W2901418248 hasConceptScore W2901418248C14948415 @default.
- W2901418248 hasConceptScore W2901418248C153180895 @default.
- W2901418248 hasConceptScore W2901418248C154945302 @default.
- W2901418248 hasConceptScore W2901418248C163716315 @default.