Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901420733> ?p ?o ?g. }
- W2901420733 endingPage "110959" @default.
- W2901420733 startingPage "110959" @default.
- W2901420733 abstract "Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing information for many applications including ecosystem functioning modeling and fire risk management. In this paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based approaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML) methods provide accurate estimates of both LMA and EWT. Using six experimental datasets including broadleaf species samples of >150 species collected over tropical, temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also tested several strategies to select the training samples used by the SVM, in order to investigate the generalization ability of the derived regression models. We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation errors by 55% and 33%, respectively. The comparison of various sampling strategies for the training set used with SVM suggests that regression models show limited generalization ability, particularly when the regression model is applied on data fully independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm spectral range." @default.
- W2901420733 created "2018-11-29" @default.
- W2901420733 creator A5003064295 @default.
- W2901420733 creator A5003302616 @default.
- W2901420733 creator A5006469882 @default.
- W2901420733 creator A5008318866 @default.
- W2901420733 creator A5020178407 @default.
- W2901420733 creator A5025082079 @default.
- W2901420733 creator A5026982579 @default.
- W2901420733 creator A5030263554 @default.
- W2901420733 creator A5039849451 @default.
- W2901420733 creator A5046717050 @default.
- W2901420733 creator A5047466067 @default.
- W2901420733 creator A5047705291 @default.
- W2901420733 creator A5052324110 @default.
- W2901420733 creator A5078698780 @default.
- W2901420733 creator A5078740130 @default.
- W2901420733 creator A5080488715 @default.
- W2901420733 creator A5086126986 @default.
- W2901420733 creator A5087144848 @default.
- W2901420733 date "2019-09-01" @default.
- W2901420733 modified "2023-10-18" @default.
- W2901420733 title "Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning" @default.
- W2901420733 cites W1006483632 @default.
- W2901420733 cites W1411779959 @default.
- W2901420733 cites W1540791770 @default.
- W2901420733 cites W1834947829 @default.
- W2901420733 cites W1910695945 @default.
- W2901420733 cites W1966579847 @default.
- W2901420733 cites W1966854564 @default.
- W2901420733 cites W1974110440 @default.
- W2901420733 cites W1976049210 @default.
- W2901420733 cites W1978160572 @default.
- W2901420733 cites W1984013872 @default.
- W2901420733 cites W1988392308 @default.
- W2901420733 cites W1990409457 @default.
- W2901420733 cites W1994704626 @default.
- W2901420733 cites W1999512103 @default.
- W2901420733 cites W2003114532 @default.
- W2901420733 cites W2005093197 @default.
- W2901420733 cites W2006176487 @default.
- W2901420733 cites W2008027214 @default.
- W2901420733 cites W2020860387 @default.
- W2901420733 cites W2022900594 @default.
- W2901420733 cites W2024039740 @default.
- W2901420733 cites W2027517645 @default.
- W2901420733 cites W2027959392 @default.
- W2901420733 cites W2028518292 @default.
- W2901420733 cites W2031418293 @default.
- W2901420733 cites W2034591642 @default.
- W2901420733 cites W2036056542 @default.
- W2901420733 cites W2039768055 @default.
- W2901420733 cites W2048120915 @default.
- W2901420733 cites W2051128904 @default.
- W2901420733 cites W2051604731 @default.
- W2901420733 cites W2056048751 @default.
- W2901420733 cites W2056496234 @default.
- W2901420733 cites W2059697555 @default.
- W2901420733 cites W2066612219 @default.
- W2901420733 cites W2072139589 @default.
- W2901420733 cites W2073100112 @default.
- W2901420733 cites W2081620141 @default.
- W2901420733 cites W2100223768 @default.
- W2901420733 cites W2101020813 @default.
- W2901420733 cites W2108275917 @default.
- W2901420733 cites W2112775986 @default.
- W2901420733 cites W2117329063 @default.
- W2901420733 cites W2118295263 @default.
- W2901420733 cites W2118791227 @default.
- W2901420733 cites W2119619836 @default.
- W2901420733 cites W2121025745 @default.
- W2901420733 cites W2121597613 @default.
- W2901420733 cites W2122175203 @default.
- W2901420733 cites W2124937378 @default.
- W2901420733 cites W2125230412 @default.
- W2901420733 cites W2132012856 @default.
- W2901420733 cites W2133957571 @default.
- W2901420733 cites W2137297556 @default.
- W2901420733 cites W2137983211 @default.
- W2901420733 cites W2142097792 @default.
- W2901420733 cites W2144042033 @default.
- W2901420733 cites W2149461430 @default.
- W2901420733 cites W2151896708 @default.
- W2901420733 cites W2153635508 @default.
- W2901420733 cites W2153883492 @default.
- W2901420733 cites W2158598432 @default.
- W2901420733 cites W2158755893 @default.
- W2901420733 cites W2161372002 @default.
- W2901420733 cites W2165916356 @default.
- W2901420733 cites W2185445703 @default.
- W2901420733 cites W2265066231 @default.
- W2901420733 cites W2288553003 @default.
- W2901420733 cites W2527752000 @default.
- W2901420733 cites W2539493577 @default.
- W2901420733 cites W2596051487 @default.
- W2901420733 cites W2621196356 @default.
- W2901420733 cites W2753393645 @default.
- W2901420733 cites W2756088825 @default.