Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901424910> ?p ?o ?g. }
- W2901424910 endingPage "e1002695" @default.
- W2901424910 startingPage "e1002695" @default.
- W2901424910 abstract "Background Emergency admissions are a major source of healthcare spending. We aimed to derive, validate, and compare conventional and machine learning models for prediction of the first emergency admission. Machine learning methods are capable of capturing complex interactions that are likely to be present when predicting less specific outcomes, such as this one. Methods and findings We used longitudinal data from linked electronic health records of 4.6 million patients aged 18–100 years from 389 practices across England between 1985 to 2015. The population was divided into a derivation cohort (80%, 3.75 million patients from 300 general practices) and a validation cohort (20%, 0.88 million patients from 89 general practices) from geographically distinct regions with different risk levels. We first replicated a previously reported Cox proportional hazards (CPH) model for prediction of the risk of the first emergency admission up to 24 months after baseline. This reference model was then compared with 2 machine learning models, random forest (RF) and gradient boosting classifier (GBC). The initial set of predictors for all models included 43 variables, including patient demographics, lifestyle factors, laboratory tests, currently prescribed medications, selected morbidities, and previous emergency admissions. We then added 13 more variables (marital status, prior general practice visits, and 11 additional morbidities), and also enriched all variables by incorporating temporal information whenever possible (e.g., time since first diagnosis). We also varied the prediction windows to 12, 36, 48, and 60 months after baseline and compared model performances. For internal validation, we used 5-fold cross-validation. When the initial set of variables was used, GBC outperformed RF and CPH, with an area under the receiver operating characteristic curve (AUC) of 0.779 (95% CI 0.777, 0.781), compared to 0.752 (95% CI 0.751, 0.753) and 0.740 (95% CI 0.739, 0.741), respectively. In external validation, we observed an AUC of 0.796, 0.736, and 0.736 for GBC, RF, and CPH, respectively. The addition of temporal information improved AUC across all models. In internal validation, the AUC rose to 0.848 (95% CI 0.847, 0.849), 0.825 (95% CI 0.824, 0.826), and 0.805 (95% CI 0.804, 0.806) for GBC, RF, and CPH, respectively, while the AUC in external validation rose to 0.826, 0.810, and 0.788, respectively. This enhancement also resulted in robust predictions for longer time horizons, with AUC values remaining at similar levels across all models. Overall, compared to the baseline reference CPH model, the final GBC model showed a 10.8% higher AUC (0.848 compared to 0.740) for prediction of risk of emergency admission within 24 months. GBC also showed the best calibration throughout the risk spectrum. Despite the wide range of variables included in models, our study was still limited by the number of variables included; inclusion of more variables could have further improved model performances. Conclusions The use of machine learning and addition of temporal information led to substantially improved discrimination and calibration for predicting the risk of emergency admission. Model performance remained stable across a range of prediction time windows and when externally validated. These findings support the potential of incorporating machine learning models into electronic health records to inform care and service planning." @default.
- W2901424910 created "2018-11-29" @default.
- W2901424910 creator A5005615304 @default.
- W2901424910 creator A5012596151 @default.
- W2901424910 creator A5016617643 @default.
- W2901424910 creator A5034348968 @default.
- W2901424910 creator A5035421884 @default.
- W2901424910 creator A5041110585 @default.
- W2901424910 creator A5049277133 @default.
- W2901424910 creator A5073721299 @default.
- W2901424910 creator A5079534458 @default.
- W2901424910 date "2018-11-20" @default.
- W2901424910 modified "2023-10-17" @default.
- W2901424910 title "Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records" @default.
- W2901424910 cites W1919216911 @default.
- W2901424910 cites W1968633584 @default.
- W2901424910 cites W2008055393 @default.
- W2901424910 cites W2049977108 @default.
- W2901424910 cites W2059031846 @default.
- W2901424910 cites W2065610092 @default.
- W2901424910 cites W2073380496 @default.
- W2901424910 cites W2078271269 @default.
- W2901424910 cites W2086923543 @default.
- W2901424910 cites W2104345271 @default.
- W2901424910 cites W2116680794 @default.
- W2901424910 cites W2119852447 @default.
- W2901424910 cites W2125283600 @default.
- W2901424910 cites W2126436234 @default.
- W2901424910 cites W2127841934 @default.
- W2901424910 cites W2134843796 @default.
- W2901424910 cites W2157823046 @default.
- W2901424910 cites W2162174135 @default.
- W2901424910 cites W2163589808 @default.
- W2901424910 cites W2474667434 @default.
- W2901424910 cites W2550447077 @default.
- W2901424910 cites W2557738935 @default.
- W2901424910 cites W2557741588 @default.
- W2901424910 cites W2562251009 @default.
- W2901424910 cites W2581082771 @default.
- W2901424910 cites W2608320814 @default.
- W2901424910 cites W2618596952 @default.
- W2901424910 cites W2734648346 @default.
- W2901424910 cites W4212883601 @default.
- W2901424910 cites W4230533278 @default.
- W2901424910 cites W4249977334 @default.
- W2901424910 doi "https://doi.org/10.1371/journal.pmed.1002695" @default.
- W2901424910 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6245681" @default.
- W2901424910 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30458006" @default.
- W2901424910 hasPublicationYear "2018" @default.
- W2901424910 type Work @default.
- W2901424910 sameAs 2901424910 @default.
- W2901424910 citedByCount "89" @default.
- W2901424910 countsByYear W29014249102018 @default.
- W2901424910 countsByYear W29014249102019 @default.
- W2901424910 countsByYear W29014249102020 @default.
- W2901424910 countsByYear W29014249102021 @default.
- W2901424910 countsByYear W29014249102022 @default.
- W2901424910 countsByYear W29014249102023 @default.
- W2901424910 crossrefType "journal-article" @default.
- W2901424910 hasAuthorship W2901424910A5005615304 @default.
- W2901424910 hasAuthorship W2901424910A5012596151 @default.
- W2901424910 hasAuthorship W2901424910A5016617643 @default.
- W2901424910 hasAuthorship W2901424910A5034348968 @default.
- W2901424910 hasAuthorship W2901424910A5035421884 @default.
- W2901424910 hasAuthorship W2901424910A5041110585 @default.
- W2901424910 hasAuthorship W2901424910A5049277133 @default.
- W2901424910 hasAuthorship W2901424910A5073721299 @default.
- W2901424910 hasAuthorship W2901424910A5079534458 @default.
- W2901424910 hasBestOaLocation W29014249101 @default.
- W2901424910 hasConcept C118552586 @default.
- W2901424910 hasConcept C119857082 @default.
- W2901424910 hasConcept C126322002 @default.
- W2901424910 hasConcept C154945302 @default.
- W2901424910 hasConcept C160735492 @default.
- W2901424910 hasConcept C162324750 @default.
- W2901424910 hasConcept C169258074 @default.
- W2901424910 hasConcept C194828623 @default.
- W2901424910 hasConcept C201903717 @default.
- W2901424910 hasConcept C2780724011 @default.
- W2901424910 hasConcept C2908647359 @default.
- W2901424910 hasConcept C3019952477 @default.
- W2901424910 hasConcept C41008148 @default.
- W2901424910 hasConcept C45804977 @default.
- W2901424910 hasConcept C50382708 @default.
- W2901424910 hasConcept C50522688 @default.
- W2901424910 hasConcept C70153297 @default.
- W2901424910 hasConcept C71924100 @default.
- W2901424910 hasConcept C72563966 @default.
- W2901424910 hasConcept C99454951 @default.
- W2901424910 hasConceptScore W2901424910C118552586 @default.
- W2901424910 hasConceptScore W2901424910C119857082 @default.
- W2901424910 hasConceptScore W2901424910C126322002 @default.
- W2901424910 hasConceptScore W2901424910C154945302 @default.
- W2901424910 hasConceptScore W2901424910C160735492 @default.
- W2901424910 hasConceptScore W2901424910C162324750 @default.
- W2901424910 hasConceptScore W2901424910C169258074 @default.
- W2901424910 hasConceptScore W2901424910C194828623 @default.
- W2901424910 hasConceptScore W2901424910C201903717 @default.