Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901430215> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2901430215 abstract "Malignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task due to uneven datasets sizes, the huge intra-class variation with small interclass variation, and the existence of many artifacts in the image. One of the most recognized methods of melanoma diagnosis is the ABCD method. In the paper, we propose an extended version of this method and an intelligent decision support system based on neural networks that uses its results in a form of hand-crafted features. Automatic determination of the skin features used by the ABCD method is difficult due to the large diversity of images of various quality, the existence of hair, different markers and other obstacles. Therefore, it was necessary to apply advanced methods of preprocessing the images. The system is an ensemble of ten neural networks, working in parallel and one network using their results to generate a final decision. This system structure allowed us to increase the efficiency of the operation by several percentage points compared to a single neural network. The proposed system is trained on over 5000 and tested afterward on 200 skin moles. The presented system can be used as a decision support system for primary care physicians, as a system capable of self-examination of the skin with a dermatoscope and also as an important tool to improve biopsy decision making." @default.
- W2901430215 created "2018-11-29" @default.
- W2901430215 creator A5006441430 @default.
- W2901430215 creator A5034493946 @default.
- W2901430215 creator A5081254082 @default.
- W2901430215 date "2023-07-26" @default.
- W2901430215 modified "2023-09-25" @default.
- W2901430215 title "Diagnosis of malignant melanoma by neural network ensemble-based system utilising hand-crafted skin lesion features" @default.
- W2901430215 doi "https://doi.org/10.24425/mms.2019.126327" @default.
- W2901430215 hasPublicationYear "2023" @default.
- W2901430215 type Work @default.
- W2901430215 sameAs 2901430215 @default.
- W2901430215 citedByCount "0" @default.
- W2901430215 crossrefType "journal-article" @default.
- W2901430215 hasAuthorship W2901430215A5006441430 @default.
- W2901430215 hasAuthorship W2901430215A5034493946 @default.
- W2901430215 hasAuthorship W2901430215A5081254082 @default.
- W2901430215 hasBestOaLocation W29014302151 @default.
- W2901430215 hasConcept C142724271 @default.
- W2901430215 hasConcept C153180895 @default.
- W2901430215 hasConcept C154945302 @default.
- W2901430215 hasConcept C16005928 @default.
- W2901430215 hasConcept C2777658100 @default.
- W2901430215 hasConcept C2781156865 @default.
- W2901430215 hasConcept C2988168687 @default.
- W2901430215 hasConcept C2991914496 @default.
- W2901430215 hasConcept C41008148 @default.
- W2901430215 hasConcept C502942594 @default.
- W2901430215 hasConcept C50644808 @default.
- W2901430215 hasConcept C71924100 @default.
- W2901430215 hasConceptScore W2901430215C142724271 @default.
- W2901430215 hasConceptScore W2901430215C153180895 @default.
- W2901430215 hasConceptScore W2901430215C154945302 @default.
- W2901430215 hasConceptScore W2901430215C16005928 @default.
- W2901430215 hasConceptScore W2901430215C2777658100 @default.
- W2901430215 hasConceptScore W2901430215C2781156865 @default.
- W2901430215 hasConceptScore W2901430215C2988168687 @default.
- W2901430215 hasConceptScore W2901430215C2991914496 @default.
- W2901430215 hasConceptScore W2901430215C41008148 @default.
- W2901430215 hasConceptScore W2901430215C502942594 @default.
- W2901430215 hasConceptScore W2901430215C50644808 @default.
- W2901430215 hasConceptScore W2901430215C71924100 @default.
- W2901430215 hasLocation W29014302151 @default.
- W2901430215 hasOpenAccess W2901430215 @default.
- W2901430215 hasPrimaryLocation W29014302151 @default.
- W2901430215 hasRelatedWork W1986759990 @default.
- W2901430215 hasRelatedWork W1989811280 @default.
- W2901430215 hasRelatedWork W2203371107 @default.
- W2901430215 hasRelatedWork W2412245334 @default.
- W2901430215 hasRelatedWork W2467610895 @default.
- W2901430215 hasRelatedWork W3011601729 @default.
- W2901430215 hasRelatedWork W3134745489 @default.
- W2901430215 hasRelatedWork W3181040192 @default.
- W2901430215 hasRelatedWork W4253840141 @default.
- W2901430215 hasRelatedWork W36464245 @default.
- W2901430215 isParatext "false" @default.
- W2901430215 isRetracted "false" @default.
- W2901430215 magId "2901430215" @default.
- W2901430215 workType "article" @default.