Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901431574> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2901431574 abstract "Recurrent Neural Network with Long Short-Term Memory cells (LSTM-RNN) have impressive ability in sequence data processing, particularly language model building and text classification. This research proposes the combination of sentiment analysis, sentence vectors, and LSTM-RNN as a novel way for cyber Sexual Predator Identification (SPI). There are two tasks in SPI. The first one is identifying sexual predators among chats. The second one is highlighting specific sexual predators’ lines in chats. Our research focuses on the first task.An LSTM-RNN language model is applied to generate sentence vectors which are the last hidden states in the language model. Sentence vectors are fed into the LSTM-RNN classifier, so as to capture suspicious conversations. Hidden state makes a breakthrough in the generation of unseen sentence vectors i.e., the system can score a sentence never seen before in the training data. Fasttext is used to filter the contents of conversations and generate a sentiment score to the purpose of identifying potential predators. IMDB sentiment review task is introduced to provide an intuitive measurement of the combined method. The model identified 206 predators out of 254. The experiment achieved a record-breaking F-0.5 score of 0.9555, higher than the top-ranked result in the SPI competition." @default.
- W2901431574 created "2018-11-29" @default.
- W2901431574 creator A5043289848 @default.
- W2901431574 date "2018-04-01" @default.
- W2901431574 modified "2023-09-24" @default.
- W2901431574 title "Identifying Cyber Predators by Using Sentiment Analysis and Recurrent Neural Networks" @default.
- W2901431574 hasPublicationYear "2018" @default.
- W2901431574 type Work @default.
- W2901431574 sameAs 2901431574 @default.
- W2901431574 citedByCount "0" @default.
- W2901431574 crossrefType "dissertation" @default.
- W2901431574 hasAuthorship W2901431574A5043289848 @default.
- W2901431574 hasConcept C119857082 @default.
- W2901431574 hasConcept C127413603 @default.
- W2901431574 hasConcept C137293760 @default.
- W2901431574 hasConcept C147168706 @default.
- W2901431574 hasConcept C148524875 @default.
- W2901431574 hasConcept C154945302 @default.
- W2901431574 hasConcept C201995342 @default.
- W2901431574 hasConcept C204321447 @default.
- W2901431574 hasConcept C2777530160 @default.
- W2901431574 hasConcept C2780451532 @default.
- W2901431574 hasConcept C28490314 @default.
- W2901431574 hasConcept C41008148 @default.
- W2901431574 hasConcept C50644808 @default.
- W2901431574 hasConcept C66402592 @default.
- W2901431574 hasConcept C95623464 @default.
- W2901431574 hasConceptScore W2901431574C119857082 @default.
- W2901431574 hasConceptScore W2901431574C127413603 @default.
- W2901431574 hasConceptScore W2901431574C137293760 @default.
- W2901431574 hasConceptScore W2901431574C147168706 @default.
- W2901431574 hasConceptScore W2901431574C148524875 @default.
- W2901431574 hasConceptScore W2901431574C154945302 @default.
- W2901431574 hasConceptScore W2901431574C201995342 @default.
- W2901431574 hasConceptScore W2901431574C204321447 @default.
- W2901431574 hasConceptScore W2901431574C2777530160 @default.
- W2901431574 hasConceptScore W2901431574C2780451532 @default.
- W2901431574 hasConceptScore W2901431574C28490314 @default.
- W2901431574 hasConceptScore W2901431574C41008148 @default.
- W2901431574 hasConceptScore W2901431574C50644808 @default.
- W2901431574 hasConceptScore W2901431574C66402592 @default.
- W2901431574 hasConceptScore W2901431574C95623464 @default.
- W2901431574 hasLocation W29014315741 @default.
- W2901431574 hasOpenAccess W2901431574 @default.
- W2901431574 hasPrimaryLocation W29014315741 @default.
- W2901431574 hasRelatedWork W2502185144 @default.
- W2901431574 hasRelatedWork W2556605533 @default.
- W2901431574 hasRelatedWork W2626620654 @default.
- W2901431574 hasRelatedWork W2758288458 @default.
- W2901431574 hasRelatedWork W2767201616 @default.
- W2901431574 hasRelatedWork W2946042881 @default.
- W2901431574 hasRelatedWork W2953536153 @default.
- W2901431574 hasRelatedWork W2963874170 @default.
- W2901431574 hasRelatedWork W2963918688 @default.
- W2901431574 hasRelatedWork W2964202476 @default.
- W2901431574 hasRelatedWork W3000546628 @default.
- W2901431574 hasRelatedWork W3016997976 @default.
- W2901431574 hasRelatedWork W3098288067 @default.
- W2901431574 hasRelatedWork W3155546041 @default.
- W2901431574 hasRelatedWork W3160901351 @default.
- W2901431574 hasRelatedWork W3170801736 @default.
- W2901431574 hasRelatedWork W3174956802 @default.
- W2901431574 hasRelatedWork W3187669469 @default.
- W2901431574 hasRelatedWork W3211120741 @default.
- W2901431574 hasRelatedWork W3138681039 @default.
- W2901431574 isParatext "false" @default.
- W2901431574 isRetracted "false" @default.
- W2901431574 magId "2901431574" @default.
- W2901431574 workType "dissertation" @default.