Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901464108> ?p ?o ?g. }
- W2901464108 endingPage "74" @default.
- W2901464108 startingPage "74" @default.
- W2901464108 abstract "The continuous and precise mapping of glacier calving fronts is essential for monitoring and understanding rapid glacier changes in Antarctica and Greenland, which have the potential for significant sea level rise within the current century. This effort has been mostly restricted to the slow and painstaking manual digitalization of the calving front positions in thousands of satellite imagery products. Here, we have developed a machine learning toolkit to automatically detect glacier calving front margins in satellite imagery. The toolkit is based on semantic image segmentation using Convolutional Neural Networks (CNN) with a modified U-Net architecture to isolate the calving fronts from satellite images after having been trained with a dataset of images and their corresponding manually-determined calving fronts. As a case study we train our neural network on a varied set of Landsat images with lowered resolutions from Jakobshavn, Sverdrup, and Kangerlussuaq glaciers, Greenland and test the results on images from Helheim glacier, Greenland to evaluate the performance of the approach. The neural network is able to identify the calving front in new images with a mean deviation of 96.3 m from the true fronts, equivalent to 1.97 pixels on average, while the corresponding error for manually-determined fronts on the same resolution images is 92.5 m (1.89 pixels). We find that the trained neural network significantly outperforms common edge detection techniques, and can be used to continuously map out calving-ice fronts with a variety of data products." @default.
- W2901464108 created "2018-11-29" @default.
- W2901464108 creator A5002471406 @default.
- W2901464108 creator A5041645299 @default.
- W2901464108 creator A5054685597 @default.
- W2901464108 creator A5061959103 @default.
- W2901464108 date "2019-01-03" @default.
- W2901464108 modified "2023-10-03" @default.
- W2901464108 title "Detection of Glacier Calving Margins with Convolutional Neural Networks: A Case Study" @default.
- W2901464108 cites W1839616346 @default.
- W2901464108 cites W1947695452 @default.
- W2901464108 cites W2024500585 @default.
- W2901464108 cites W2033849769 @default.
- W2901464108 cites W2038697952 @default.
- W2901464108 cites W2061372308 @default.
- W2901464108 cites W2064311963 @default.
- W2901464108 cites W2065989874 @default.
- W2901464108 cites W2139709933 @default.
- W2901464108 cites W2150134853 @default.
- W2901464108 cites W2334815434 @default.
- W2901464108 cites W2416311363 @default.
- W2901464108 cites W2568967893 @default.
- W2901464108 cites W2580640566 @default.
- W2901464108 cites W2622826443 @default.
- W2901464108 cites W2736240981 @default.
- W2901464108 cites W2809202542 @default.
- W2901464108 cites W2855614908 @default.
- W2901464108 cites W2880601399 @default.
- W2901464108 cites W2919115771 @default.
- W2901464108 doi "https://doi.org/10.3390/rs11010074" @default.
- W2901464108 hasPublicationYear "2019" @default.
- W2901464108 type Work @default.
- W2901464108 sameAs 2901464108 @default.
- W2901464108 citedByCount "48" @default.
- W2901464108 countsByYear W29014641082019 @default.
- W2901464108 countsByYear W29014641082020 @default.
- W2901464108 countsByYear W29014641082021 @default.
- W2901464108 countsByYear W29014641082022 @default.
- W2901464108 countsByYear W29014641082023 @default.
- W2901464108 crossrefType "journal-article" @default.
- W2901464108 hasAuthorship W2901464108A5002471406 @default.
- W2901464108 hasAuthorship W2901464108A5041645299 @default.
- W2901464108 hasAuthorship W2901464108A5054685597 @default.
- W2901464108 hasAuthorship W2901464108A5061959103 @default.
- W2901464108 hasBestOaLocation W29014641081 @default.
- W2901464108 hasConcept C100834320 @default.
- W2901464108 hasConcept C100970517 @default.
- W2901464108 hasConcept C111368507 @default.
- W2901464108 hasConcept C114793014 @default.
- W2901464108 hasConcept C127313418 @default.
- W2901464108 hasConcept C127413603 @default.
- W2901464108 hasConcept C13280743 @default.
- W2901464108 hasConcept C146978453 @default.
- W2901464108 hasConcept C154945302 @default.
- W2901464108 hasConcept C160633673 @default.
- W2901464108 hasConcept C19269812 @default.
- W2901464108 hasConcept C205649164 @default.
- W2901464108 hasConcept C22641795 @default.
- W2901464108 hasConcept C2776659692 @default.
- W2901464108 hasConcept C2777551076 @default.
- W2901464108 hasConcept C2778102629 @default.
- W2901464108 hasConcept C2779234561 @default.
- W2901464108 hasConcept C41008148 @default.
- W2901464108 hasConcept C50644808 @default.
- W2901464108 hasConcept C54355233 @default.
- W2901464108 hasConcept C62649853 @default.
- W2901464108 hasConcept C81363708 @default.
- W2901464108 hasConcept C86803240 @default.
- W2901464108 hasConceptScore W2901464108C100834320 @default.
- W2901464108 hasConceptScore W2901464108C100970517 @default.
- W2901464108 hasConceptScore W2901464108C111368507 @default.
- W2901464108 hasConceptScore W2901464108C114793014 @default.
- W2901464108 hasConceptScore W2901464108C127313418 @default.
- W2901464108 hasConceptScore W2901464108C127413603 @default.
- W2901464108 hasConceptScore W2901464108C13280743 @default.
- W2901464108 hasConceptScore W2901464108C146978453 @default.
- W2901464108 hasConceptScore W2901464108C154945302 @default.
- W2901464108 hasConceptScore W2901464108C160633673 @default.
- W2901464108 hasConceptScore W2901464108C19269812 @default.
- W2901464108 hasConceptScore W2901464108C205649164 @default.
- W2901464108 hasConceptScore W2901464108C22641795 @default.
- W2901464108 hasConceptScore W2901464108C2776659692 @default.
- W2901464108 hasConceptScore W2901464108C2777551076 @default.
- W2901464108 hasConceptScore W2901464108C2778102629 @default.
- W2901464108 hasConceptScore W2901464108C2779234561 @default.
- W2901464108 hasConceptScore W2901464108C41008148 @default.
- W2901464108 hasConceptScore W2901464108C50644808 @default.
- W2901464108 hasConceptScore W2901464108C54355233 @default.
- W2901464108 hasConceptScore W2901464108C62649853 @default.
- W2901464108 hasConceptScore W2901464108C81363708 @default.
- W2901464108 hasConceptScore W2901464108C86803240 @default.
- W2901464108 hasIssue "1" @default.
- W2901464108 hasLocation W29014641081 @default.
- W2901464108 hasLocation W29014641082 @default.
- W2901464108 hasLocation W29014641083 @default.
- W2901464108 hasLocation W29014641084 @default.
- W2901464108 hasOpenAccess W2901464108 @default.
- W2901464108 hasPrimaryLocation W29014641081 @default.