Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901469953> ?p ?o ?g. }
- W2901469953 endingPage "138" @default.
- W2901469953 startingPage "128" @default.
- W2901469953 abstract "Abstract Time series forecasting is important in many aspects of our lives, since it can be used to deal with the uncertainty to further support the decision making. Despite many advanced methodologies have been proposed, modelling the underlying relationship between past and future conditions is still a challenge. In this research, we develop a novel time series forecasting model which can effectively predict future conditions in a timely fashion. A time series has nonlinear and nonstationary characteristics which make prediction using statistical or computational intelligent methods a difficult task. Therefore, a hybrid deep learning and empirical mode decomposition model, namely EMD–SAE, for multistep ahead forecasting is proposed to predict the traffic flow and random time series. The performances of the proposed model are compared and discussed. This paper shows the potential of hybridizing the deep learning and empirical mode decomposition to the ordinary time series forecasting approach, and the experimental results suggest that the proposed EMD–SAE is reliable, suitable and a promising method for time series forecasting." @default.
- W2901469953 created "2018-11-29" @default.
- W2901469953 creator A5028124766 @default.
- W2901469953 creator A5063038462 @default.
- W2901469953 date "2019-04-01" @default.
- W2901469953 modified "2023-10-17" @default.
- W2901469953 title "Hybrid deep learning and empirical mode decomposition model for time series applications" @default.
- W2901469953 cites W1793209788 @default.
- W2901469953 cites W18228458 @default.
- W2901469953 cites W1966499742 @default.
- W2901469953 cites W1970978817 @default.
- W2901469953 cites W1976027313 @default.
- W2901469953 cites W1977066927 @default.
- W2901469953 cites W1979575715 @default.
- W2901469953 cites W1982680432 @default.
- W2901469953 cites W2013472039 @default.
- W2901469953 cites W2014378975 @default.
- W2901469953 cites W2018316544 @default.
- W2901469953 cites W2021866685 @default.
- W2901469953 cites W2037370667 @default.
- W2901469953 cites W2039346833 @default.
- W2901469953 cites W2041745720 @default.
- W2901469953 cites W2044781495 @default.
- W2901469953 cites W2047493229 @default.
- W2901469953 cites W2055603411 @default.
- W2901469953 cites W2060364371 @default.
- W2901469953 cites W2076661204 @default.
- W2901469953 cites W2080937097 @default.
- W2901469953 cites W2083022762 @default.
- W2901469953 cites W2085987121 @default.
- W2901469953 cites W2087673205 @default.
- W2901469953 cites W2088202114 @default.
- W2901469953 cites W2100495367 @default.
- W2901469953 cites W2117922789 @default.
- W2901469953 cites W2120912971 @default.
- W2901469953 cites W2132782512 @default.
- W2901469953 cites W2133764509 @default.
- W2901469953 cites W2137983211 @default.
- W2901469953 cites W2138727729 @default.
- W2901469953 cites W2140208140 @default.
- W2901469953 cites W2171234954 @default.
- W2901469953 cites W2179877357 @default.
- W2901469953 cites W2201004764 @default.
- W2901469953 cites W2321536237 @default.
- W2901469953 cites W2504266609 @default.
- W2901469953 cites W252542266 @default.
- W2901469953 cites W2742365644 @default.
- W2901469953 cites W2768102848 @default.
- W2901469953 cites W2791000529 @default.
- W2901469953 cites W2896797507 @default.
- W2901469953 cites W4239510810 @default.
- W2901469953 cites W4246587917 @default.
- W2901469953 doi "https://doi.org/10.1016/j.eswa.2018.11.019" @default.
- W2901469953 hasPublicationYear "2019" @default.
- W2901469953 type Work @default.
- W2901469953 sameAs 2901469953 @default.
- W2901469953 citedByCount "64" @default.
- W2901469953 countsByYear W29014699532019 @default.
- W2901469953 countsByYear W29014699532020 @default.
- W2901469953 countsByYear W29014699532021 @default.
- W2901469953 countsByYear W29014699532022 @default.
- W2901469953 countsByYear W29014699532023 @default.
- W2901469953 crossrefType "journal-article" @default.
- W2901469953 hasAuthorship W2901469953A5028124766 @default.
- W2901469953 hasAuthorship W2901469953A5063038462 @default.
- W2901469953 hasConcept C107457646 @default.
- W2901469953 hasConcept C108583219 @default.
- W2901469953 hasConcept C112633086 @default.
- W2901469953 hasConcept C119857082 @default.
- W2901469953 hasConcept C124681953 @default.
- W2901469953 hasConcept C143724316 @default.
- W2901469953 hasConcept C151406439 @default.
- W2901469953 hasConcept C151730666 @default.
- W2901469953 hasConcept C154945302 @default.
- W2901469953 hasConcept C18903297 @default.
- W2901469953 hasConcept C25570617 @default.
- W2901469953 hasConcept C41008148 @default.
- W2901469953 hasConcept C48677424 @default.
- W2901469953 hasConcept C76155785 @default.
- W2901469953 hasConcept C86803240 @default.
- W2901469953 hasConceptScore W2901469953C107457646 @default.
- W2901469953 hasConceptScore W2901469953C108583219 @default.
- W2901469953 hasConceptScore W2901469953C112633086 @default.
- W2901469953 hasConceptScore W2901469953C119857082 @default.
- W2901469953 hasConceptScore W2901469953C124681953 @default.
- W2901469953 hasConceptScore W2901469953C143724316 @default.
- W2901469953 hasConceptScore W2901469953C151406439 @default.
- W2901469953 hasConceptScore W2901469953C151730666 @default.
- W2901469953 hasConceptScore W2901469953C154945302 @default.
- W2901469953 hasConceptScore W2901469953C18903297 @default.
- W2901469953 hasConceptScore W2901469953C25570617 @default.
- W2901469953 hasConceptScore W2901469953C41008148 @default.
- W2901469953 hasConceptScore W2901469953C48677424 @default.
- W2901469953 hasConceptScore W2901469953C76155785 @default.
- W2901469953 hasConceptScore W2901469953C86803240 @default.
- W2901469953 hasLocation W29014699531 @default.
- W2901469953 hasOpenAccess W2901469953 @default.
- W2901469953 hasPrimaryLocation W29014699531 @default.