Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901471513> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2901471513 abstract "Learning explicit and implicit patterns in human trajectories plays an important role in many Location-Based Social Networks (LBSNs) applications, such as trajectory classification (e.g., walking, driving, etc.), trajectory-user linking, friend recommendation, etc. A particular problem that has attracted much attention recently - and is the focus of our work - is the Trajectory-based Social Circle Inference (TSCI), aiming at inferring user social circles (mainly social friendship) based on motion trajectories and without any explicit social networked information. Existing approaches addressing TSCI lack satisfactory results due to the challenges related to data sparsity, accessibility and model efficiency. Motivated by the recent success of machine learning in trajectory mining, in this paper we formulate TSCI as a novel multi-label classification problem and develop a Recurrent Neural Network (RNN)-based framework called DeepTSCI to use human mobility patterns for inferring corresponding social circles. We propose three methods to learn the latent representations of trajectories, based on: (1) bidirectional Long Short-Term Memory (LSTM); (2) Autoencoder; and (3) Variational autoencoder. Experiments conducted on real-world datasets demonstrate that our proposed methods perform well and achieve significant improvement in terms of macro-R, macro-F1 and accuracy when compared to baselines." @default.
- W2901471513 created "2018-11-29" @default.
- W2901471513 creator A5014223717 @default.
- W2901471513 creator A5034789908 @default.
- W2901471513 creator A5048618271 @default.
- W2901471513 creator A5053447705 @default.
- W2901471513 creator A5076831677 @default.
- W2901471513 creator A5086447943 @default.
- W2901471513 date "2018-11-06" @default.
- W2901471513 modified "2023-10-15" @default.
- W2901471513 title "Trajectory-based social circle inference" @default.
- W2901471513 cites W1971711631 @default.
- W2901471513 cites W1997590279 @default.
- W2901471513 cites W1999954155 @default.
- W2901471513 cites W2009779426 @default.
- W2901471513 cites W2012580531 @default.
- W2901471513 cites W2027266161 @default.
- W2901471513 cites W2042537503 @default.
- W2901471513 cites W2052684427 @default.
- W2901471513 cites W2065130322 @default.
- W2901471513 cites W2099888920 @default.
- W2901471513 cites W2136317921 @default.
- W2901471513 cites W2152204876 @default.
- W2901471513 cites W2265846598 @default.
- W2901471513 cites W2296095845 @default.
- W2901471513 cites W2472954632 @default.
- W2901471513 cites W2539781657 @default.
- W2901471513 cites W2557798836 @default.
- W2901471513 cites W2562585624 @default.
- W2901471513 cites W2605372386 @default.
- W2901471513 cites W2616145386 @default.
- W2901471513 cites W2730106296 @default.
- W2901471513 cites W2740797857 @default.
- W2901471513 cites W2741206673 @default.
- W2901471513 cites W2963223306 @default.
- W2901471513 cites W2963645026 @default.
- W2901471513 cites W3105196786 @default.
- W2901471513 cites W4244337749 @default.
- W2901471513 cites W4293861233 @default.
- W2901471513 cites W574900623 @default.
- W2901471513 doi "https://doi.org/10.1145/3274895.3274908" @default.
- W2901471513 hasPublicationYear "2018" @default.
- W2901471513 type Work @default.
- W2901471513 sameAs 2901471513 @default.
- W2901471513 citedByCount "22" @default.
- W2901471513 countsByYear W29014715132019 @default.
- W2901471513 countsByYear W29014715132020 @default.
- W2901471513 countsByYear W29014715132021 @default.
- W2901471513 countsByYear W29014715132022 @default.
- W2901471513 countsByYear W29014715132023 @default.
- W2901471513 crossrefType "proceedings-article" @default.
- W2901471513 hasAuthorship W2901471513A5014223717 @default.
- W2901471513 hasAuthorship W2901471513A5034789908 @default.
- W2901471513 hasAuthorship W2901471513A5048618271 @default.
- W2901471513 hasAuthorship W2901471513A5053447705 @default.
- W2901471513 hasAuthorship W2901471513A5076831677 @default.
- W2901471513 hasAuthorship W2901471513A5086447943 @default.
- W2901471513 hasBestOaLocation W29014715131 @default.
- W2901471513 hasConcept C121332964 @default.
- W2901471513 hasConcept C1276947 @default.
- W2901471513 hasConcept C13662910 @default.
- W2901471513 hasConcept C154945302 @default.
- W2901471513 hasConcept C2776214188 @default.
- W2901471513 hasConcept C41008148 @default.
- W2901471513 hasConceptScore W2901471513C121332964 @default.
- W2901471513 hasConceptScore W2901471513C1276947 @default.
- W2901471513 hasConceptScore W2901471513C13662910 @default.
- W2901471513 hasConceptScore W2901471513C154945302 @default.
- W2901471513 hasConceptScore W2901471513C2776214188 @default.
- W2901471513 hasConceptScore W2901471513C41008148 @default.
- W2901471513 hasFunder F4320306076 @default.
- W2901471513 hasFunder F4320335595 @default.
- W2901471513 hasFunder F4320338298 @default.
- W2901471513 hasLocation W29014715131 @default.
- W2901471513 hasOpenAccess W2901471513 @default.
- W2901471513 hasPrimaryLocation W29014715131 @default.
- W2901471513 hasRelatedWork W1571484390 @default.
- W2901471513 hasRelatedWork W202916971 @default.
- W2901471513 hasRelatedWork W2086253379 @default.
- W2901471513 hasRelatedWork W2211820962 @default.
- W2901471513 hasRelatedWork W2367950322 @default.
- W2901471513 hasRelatedWork W2751934007 @default.
- W2901471513 hasRelatedWork W2891058410 @default.
- W2901471513 hasRelatedWork W3012422617 @default.
- W2901471513 hasRelatedWork W3047144510 @default.
- W2901471513 hasRelatedWork W3206921089 @default.
- W2901471513 isParatext "false" @default.
- W2901471513 isRetracted "false" @default.
- W2901471513 magId "2901471513" @default.
- W2901471513 workType "article" @default.