Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901473386> ?p ?o ?g. }
- W2901473386 endingPage "76" @default.
- W2901473386 startingPage "56" @default.
- W2901473386 abstract "Abstract In this study, daily river stage–discharge relationship was predicted using different modeling scenarios. Ensemble empirical mode decomposition (EEMD) algorithm and wavelet transform (WT) were used as hybrid pre-processing approach. In the WT-EEMD approach, first temporal features were decomposed using WT. Furthermore, the decomposed sub-series were further broken down into intrinsic mode functions via EEMD to obtain features with higher stationary properties. Mutual information was used to select dominant sub-series and determine efficient input dataset. Relevance vector machine (RVM) was applied to forecast river discharge. Three scenarios were developed to predict river stage–discharge process. First, a successive-station form of forecasting was proposed by incorporating geomorphological features into the modeling process. Subsequently, an integrated RVM (I-RVM) was trained based on the concept of the cascade of reservoirs and the meta-learning approach. The proposed I-RVM had the semi-distributed characteristics of the river discharge model. Finally, a multivariate RVM was trained to predict discharge for different points of the river. For this reason Westhope station's features were used as input to predict discharge at downstream of the river. Results were compared with rating curve and capability of proposed models were approved in prediction of short-term river stage–discharge." @default.
- W2901473386 created "2018-11-29" @default.
- W2901473386 creator A5019721159 @default.
- W2901473386 creator A5033247515 @default.
- W2901473386 date "2018-11-23" @default.
- W2901473386 modified "2023-09-29" @default.
- W2901473386 title "Scenario-based prediction of short-term river stage–discharge process using wavelet-EEMD-based relevance vector machine" @default.
- W2901473386 cites W1965737908 @default.
- W2901473386 cites W1971812886 @default.
- W2901473386 cites W1972951432 @default.
- W2901473386 cites W1980701638 @default.
- W2901473386 cites W1981706959 @default.
- W2901473386 cites W1995875735 @default.
- W2901473386 cites W2003149486 @default.
- W2901473386 cites W2006599158 @default.
- W2901473386 cites W2007221293 @default.
- W2901473386 cites W2011433625 @default.
- W2901473386 cites W2017015603 @default.
- W2901473386 cites W2020097894 @default.
- W2901473386 cites W2024119716 @default.
- W2901473386 cites W2033186302 @default.
- W2901473386 cites W2033904036 @default.
- W2901473386 cites W2034342537 @default.
- W2901473386 cites W2037460094 @default.
- W2901473386 cites W2046785557 @default.
- W2901473386 cites W2046794274 @default.
- W2901473386 cites W2049917046 @default.
- W2901473386 cites W2052914342 @default.
- W2901473386 cites W2063263322 @default.
- W2901473386 cites W2065295307 @default.
- W2901473386 cites W2078477703 @default.
- W2901473386 cites W2089305227 @default.
- W2901473386 cites W2091848193 @default.
- W2901473386 cites W2093314797 @default.
- W2901473386 cites W2094193006 @default.
- W2901473386 cites W2120390927 @default.
- W2901473386 cites W2128965742 @default.
- W2901473386 cites W2145425978 @default.
- W2901473386 cites W2165580920 @default.
- W2901473386 cites W2218946360 @default.
- W2901473386 cites W2290873233 @default.
- W2901473386 cites W2325558227 @default.
- W2901473386 cites W2332749031 @default.
- W2901473386 cites W2418123137 @default.
- W2901473386 cites W2748069545 @default.
- W2901473386 cites W2766084314 @default.
- W2901473386 cites W2787588690 @default.
- W2901473386 cites W2791570918 @default.
- W2901473386 cites W2800043356 @default.
- W2901473386 doi "https://doi.org/10.2166/hydro.2018.023" @default.
- W2901473386 hasPublicationYear "2018" @default.
- W2901473386 type Work @default.
- W2901473386 sameAs 2901473386 @default.
- W2901473386 citedByCount "20" @default.
- W2901473386 countsByYear W29014733862019 @default.
- W2901473386 countsByYear W29014733862021 @default.
- W2901473386 countsByYear W29014733862022 @default.
- W2901473386 countsByYear W29014733862023 @default.
- W2901473386 crossrefType "journal-article" @default.
- W2901473386 hasAuthorship W2901473386A5019721159 @default.
- W2901473386 hasAuthorship W2901473386A5033247515 @default.
- W2901473386 hasBestOaLocation W29014733861 @default.
- W2901473386 hasConcept C106131492 @default.
- W2901473386 hasConcept C111919701 @default.
- W2901473386 hasConcept C119857082 @default.
- W2901473386 hasConcept C121332964 @default.
- W2901473386 hasConcept C12267149 @default.
- W2901473386 hasConcept C124101348 @default.
- W2901473386 hasConcept C126645576 @default.
- W2901473386 hasConcept C127313418 @default.
- W2901473386 hasConcept C127413603 @default.
- W2901473386 hasConcept C143724316 @default.
- W2901473386 hasConcept C146357865 @default.
- W2901473386 hasConcept C14948415 @default.
- W2901473386 hasConcept C151730666 @default.
- W2901473386 hasConcept C153180895 @default.
- W2901473386 hasConcept C154945302 @default.
- W2901473386 hasConcept C158154518 @default.
- W2901473386 hasConcept C17744445 @default.
- W2901473386 hasConcept C199539241 @default.
- W2901473386 hasConcept C205649164 @default.
- W2901473386 hasConcept C25570617 @default.
- W2901473386 hasConcept C2780150128 @default.
- W2901473386 hasConcept C2816523 @default.
- W2901473386 hasConcept C31972630 @default.
- W2901473386 hasConcept C34146451 @default.
- W2901473386 hasConcept C41008148 @default.
- W2901473386 hasConcept C42360764 @default.
- W2901473386 hasConcept C47432892 @default.
- W2901473386 hasConcept C48677424 @default.
- W2901473386 hasConcept C50644808 @default.
- W2901473386 hasConcept C58640448 @default.
- W2901473386 hasConcept C61797465 @default.
- W2901473386 hasConcept C62520636 @default.
- W2901473386 hasConcept C81660378 @default.
- W2901473386 hasConcept C87027312 @default.
- W2901473386 hasConcept C98045186 @default.
- W2901473386 hasConceptScore W2901473386C106131492 @default.