Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901612843> ?p ?o ?g. }
- W2901612843 abstract "Abstract For prostate cancer patients, the Gleason score is one of the most important prognostic factors, potentially determining treatment independent of the stage. However, Gleason scoring is based on subjective microscopic examination of tumor morphology and suffers from poor reproducibility. Here we present a deep learning system (DLS) for Gleason scoring whole-slide images of prostatectomies. Our system was developed using 112 million pathologist-annotated image patches from 1226 slides, and evaluated on an independent validation dataset of 331 slides. Compared to a reference standard provided by genitourinary pathology experts, the mean accuracy among 29 general pathologists was 0.61 on the validation set. The DLS achieved a significantly higher diagnostic accuracy of 0.70 ( p = 0.002) and trended towards better patient risk stratification in correlations to clinical follow-up data. Our approach could improve the accuracy of Gleason scoring and subsequent therapy decisions, particularly where specialist expertise is unavailable. The DLS also goes beyond the current Gleason system to more finely characterize and quantitate tumor morphology, providing opportunities for refinement of the Gleason system itself." @default.
- W2901612843 created "2018-11-29" @default.
- W2901612843 creator A5013940751 @default.
- W2901612843 creator A5021041237 @default.
- W2901612843 creator A5036500538 @default.
- W2901612843 creator A5036703455 @default.
- W2901612843 creator A5039111176 @default.
- W2901612843 creator A5043709533 @default.
- W2901612843 creator A5050858581 @default.
- W2901612843 creator A5050883476 @default.
- W2901612843 creator A5055588368 @default.
- W2901612843 creator A5063867870 @default.
- W2901612843 creator A5066927687 @default.
- W2901612843 creator A5067814797 @default.
- W2901612843 creator A5069876889 @default.
- W2901612843 creator A5076378363 @default.
- W2901612843 creator A5076826749 @default.
- W2901612843 creator A5078784976 @default.
- W2901612843 creator A5082073517 @default.
- W2901612843 creator A5087778452 @default.
- W2901612843 creator A5090319728 @default.
- W2901612843 date "2019-06-07" @default.
- W2901612843 modified "2023-10-17" @default.
- W2901612843 title "Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer" @default.
- W2901612843 cites W1545430154 @default.
- W2901612843 cites W1580788756 @default.
- W2901612843 cites W1806046400 @default.
- W2901612843 cites W1961674496 @default.
- W2901612843 cites W1977551372 @default.
- W2901612843 cites W2004616400 @default.
- W2901612843 cites W2007397149 @default.
- W2901612843 cites W2032076779 @default.
- W2901612843 cites W2034992378 @default.
- W2901612843 cites W2053154970 @default.
- W2901612843 cites W2081629172 @default.
- W2901612843 cites W2083043726 @default.
- W2901612843 cites W2100001148 @default.
- W2901612843 cites W2102235862 @default.
- W2901612843 cites W2103088698 @default.
- W2901612843 cites W2104180056 @default.
- W2901612843 cites W2112539990 @default.
- W2901612843 cites W2131415585 @default.
- W2901612843 cites W2134951874 @default.
- W2901612843 cites W2146071495 @default.
- W2901612843 cites W2158485828 @default.
- W2901612843 cites W2183341477 @default.
- W2901612843 cites W2264887978 @default.
- W2901612843 cites W2294284738 @default.
- W2901612843 cites W2301685087 @default.
- W2901612843 cites W2332913015 @default.
- W2901612843 cites W2340422569 @default.
- W2901612843 cites W2443266644 @default.
- W2901612843 cites W2531409750 @default.
- W2901612843 cites W2557738935 @default.
- W2901612843 cites W2581082771 @default.
- W2901612843 cites W2592285328 @default.
- W2901612843 cites W2592936145 @default.
- W2901612843 cites W2593134963 @default.
- W2901612843 cites W2618004756 @default.
- W2901612843 cites W2747085440 @default.
- W2901612843 cites W2758333670 @default.
- W2901612843 cites W2772246530 @default.
- W2901612843 cites W2772723798 @default.
- W2901612843 cites W2788633781 @default.
- W2901612843 cites W2792527495 @default.
- W2901612843 cites W2795989238 @default.
- W2901612843 cites W2806853752 @default.
- W2901612843 cites W2886281300 @default.
- W2901612843 cites W2894917609 @default.
- W2901612843 cites W2895559788 @default.
- W2901612843 cites W2896817483 @default.
- W2901612843 cites W2897434820 @default.
- W2901612843 cites W2949226441 @default.
- W2901612843 cites W2964081807 @default.
- W2901612843 cites W2966884791 @default.
- W2901612843 cites W4245001167 @default.
- W2901612843 cites W759231069 @default.
- W2901612843 doi "https://doi.org/10.1038/s41746-019-0112-2" @default.
- W2901612843 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6555810" @default.
- W2901612843 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31304394" @default.
- W2901612843 hasPublicationYear "2019" @default.
- W2901612843 type Work @default.
- W2901612843 sameAs 2901612843 @default.
- W2901612843 citedByCount "243" @default.
- W2901612843 countsByYear W29016128432019 @default.
- W2901612843 countsByYear W29016128432020 @default.
- W2901612843 countsByYear W29016128432021 @default.
- W2901612843 countsByYear W29016128432022 @default.
- W2901612843 countsByYear W29016128432023 @default.
- W2901612843 crossrefType "journal-article" @default.
- W2901612843 hasAuthorship W2901612843A5013940751 @default.
- W2901612843 hasAuthorship W2901612843A5021041237 @default.
- W2901612843 hasAuthorship W2901612843A5036500538 @default.
- W2901612843 hasAuthorship W2901612843A5036703455 @default.
- W2901612843 hasAuthorship W2901612843A5039111176 @default.
- W2901612843 hasAuthorship W2901612843A5043709533 @default.
- W2901612843 hasAuthorship W2901612843A5050858581 @default.
- W2901612843 hasAuthorship W2901612843A5050883476 @default.
- W2901612843 hasAuthorship W2901612843A5055588368 @default.
- W2901612843 hasAuthorship W2901612843A5063867870 @default.