Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901647431> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2901647431 abstract "High resolution image time series as those provided by Sentinel-2 allow to target semantically rich nomenclatures for land cover mapping. However, at 10 m resolution, pixel based classification fails to correctly identify some classes for which pixel context is discriminative. Recent advances in deep convolutional neural networks show promising results to tackle this problem, but the lack of complete annotation over large areas, the computational cost and the dimensionality of the feature space (much larger than those used in computer vision) does not allow to use these approaches in operational mapping applications yet. Contextual information can be calculated by applying a fixed-size neighborhood filter, but this can cause the loss of linear objects and the rounding of sharp corners. In Object Based Image Analysis, segmentation is used to extract objects for calculating contextual features while maintaining the high-frequency elements in the image. However, these do not necessarily include spectrally diverse pixels in a neighborhood, which can be relevant for characterizing the context. Superpixels place themselves in between the fixed-neighborhood and the object-based methods, in that they include spectrally diverse pixels in the same segment by imposing size and compacity constraints, while remaining adaptive to the natural boundaries in the image. This study assesses and compares the ability of these three types of neighborhood to improve classification performance on context-dependent classes, in a high-resolution Sentinel-2 time series land cover mapping problem." @default.
- W2901647431 created "2018-11-29" @default.
- W2901647431 creator A5046537661 @default.
- W2901647431 creator A5075135845 @default.
- W2901647431 creator A5085372497 @default.
- W2901647431 date "2018-07-01" @default.
- W2901647431 modified "2023-09-24" @default.
- W2901647431 title "Spatially Precise Contextual Features Based on Superpixel Neighborhoods for Land Cover Mapping with High Resolution Satellite Image Time Series" @default.
- W2901647431 cites W1984792953 @default.
- W2901647431 cites W2059432853 @default.
- W2901647431 cites W2067191022 @default.
- W2901647431 cites W2118246710 @default.
- W2901647431 cites W2124109413 @default.
- W2901647431 cites W2152414269 @default.
- W2901647431 cites W2160695359 @default.
- W2901647431 cites W2343108676 @default.
- W2901647431 cites W2581906016 @default.
- W2901647431 cites W2911964244 @default.
- W2901647431 cites W2981849677 @default.
- W2901647431 doi "https://doi.org/10.1109/igarss.2018.8518961" @default.
- W2901647431 hasPublicationYear "2018" @default.
- W2901647431 type Work @default.
- W2901647431 sameAs 2901647431 @default.
- W2901647431 citedByCount "3" @default.
- W2901647431 countsByYear W29016474312020 @default.
- W2901647431 countsByYear W29016474312021 @default.
- W2901647431 crossrefType "proceedings-article" @default.
- W2901647431 hasAuthorship W2901647431A5046537661 @default.
- W2901647431 hasAuthorship W2901647431A5075135845 @default.
- W2901647431 hasAuthorship W2901647431A5085372497 @default.
- W2901647431 hasConcept C106131492 @default.
- W2901647431 hasConcept C127413603 @default.
- W2901647431 hasConcept C138885662 @default.
- W2901647431 hasConcept C147176958 @default.
- W2901647431 hasConcept C153180895 @default.
- W2901647431 hasConcept C154945302 @default.
- W2901647431 hasConcept C160633673 @default.
- W2901647431 hasConcept C166957645 @default.
- W2901647431 hasConcept C205649164 @default.
- W2901647431 hasConcept C2776401178 @default.
- W2901647431 hasConcept C2779343474 @default.
- W2901647431 hasConcept C2780648208 @default.
- W2901647431 hasConcept C31972630 @default.
- W2901647431 hasConcept C41008148 @default.
- W2901647431 hasConcept C41895202 @default.
- W2901647431 hasConcept C4792198 @default.
- W2901647431 hasConcept C81363708 @default.
- W2901647431 hasConcept C97931131 @default.
- W2901647431 hasConceptScore W2901647431C106131492 @default.
- W2901647431 hasConceptScore W2901647431C127413603 @default.
- W2901647431 hasConceptScore W2901647431C138885662 @default.
- W2901647431 hasConceptScore W2901647431C147176958 @default.
- W2901647431 hasConceptScore W2901647431C153180895 @default.
- W2901647431 hasConceptScore W2901647431C154945302 @default.
- W2901647431 hasConceptScore W2901647431C160633673 @default.
- W2901647431 hasConceptScore W2901647431C166957645 @default.
- W2901647431 hasConceptScore W2901647431C205649164 @default.
- W2901647431 hasConceptScore W2901647431C2776401178 @default.
- W2901647431 hasConceptScore W2901647431C2779343474 @default.
- W2901647431 hasConceptScore W2901647431C2780648208 @default.
- W2901647431 hasConceptScore W2901647431C31972630 @default.
- W2901647431 hasConceptScore W2901647431C41008148 @default.
- W2901647431 hasConceptScore W2901647431C41895202 @default.
- W2901647431 hasConceptScore W2901647431C4792198 @default.
- W2901647431 hasConceptScore W2901647431C81363708 @default.
- W2901647431 hasConceptScore W2901647431C97931131 @default.
- W2901647431 hasLocation W29016474311 @default.
- W2901647431 hasOpenAccess W2901647431 @default.
- W2901647431 hasPrimaryLocation W29016474311 @default.
- W2901647431 hasRelatedWork W1964191339 @default.
- W2901647431 hasRelatedWork W2124132578 @default.
- W2901647431 hasRelatedWork W2136485282 @default.
- W2901647431 hasRelatedWork W2406522397 @default.
- W2901647431 hasRelatedWork W2546871836 @default.
- W2901647431 hasRelatedWork W2725397116 @default.
- W2901647431 hasRelatedWork W2970216048 @default.
- W2901647431 hasRelatedWork W3128999341 @default.
- W2901647431 hasRelatedWork W4225145356 @default.
- W2901647431 hasRelatedWork W4284989669 @default.
- W2901647431 isParatext "false" @default.
- W2901647431 isRetracted "false" @default.
- W2901647431 magId "2901647431" @default.
- W2901647431 workType "article" @default.