Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901661567> ?p ?o ?g. }
- W2901661567 endingPage "120" @default.
- W2901661567 startingPage "114" @default.
- W2901661567 abstract "Motivated to predict the properties of new material belonging to the 7000 aluminum alloys (7000-Al-alloy), in this contribution, we develop a combined model based on the artificial neural network approaches to predict the class of the Al-alloy and compute its mechanical properties. The adopted neural model is able to predict the type of alloys whether “hard and brittle” or “hard and ductile”. The concentrations of aluminum and the various additive elements (Al, Cr, Cu, Fe, Mg, Mn, Si, Ti, Zn) are used to train the neural network model. The results show a high performance in predicting and optimizing the mechanical behavior of the 7000-Al-alloys. For a better validation of our model, the 7005 (T6), 7475 (T65), 7475 (T7351), 7005 (T53), 7075 (T6), 7175 (T66), 7075 (T76), and 7075 (O) alloys are used as testing materials to predict the hardness (H), density (D), elongation (A), compressibility modulus (B), shear modulus (G) and the ratio (B/G)." @default.
- W2901661567 created "2018-11-29" @default.
- W2901661567 creator A5062225145 @default.
- W2901661567 creator A5076332412 @default.
- W2901661567 date "2019-02-01" @default.
- W2901661567 modified "2023-10-10" @default.
- W2901661567 title "Neural network model for 7000 (Al-Z) alloys: Classification and prediction of mechanical properties" @default.
- W2901661567 cites W129052881 @default.
- W2901661567 cites W1631837487 @default.
- W2901661567 cites W1782895054 @default.
- W2901661567 cites W1910079862 @default.
- W2901661567 cites W1985035155 @default.
- W2901661567 cites W1985394372 @default.
- W2901661567 cites W1989702294 @default.
- W2901661567 cites W1996692630 @default.
- W2901661567 cites W2006380237 @default.
- W2901661567 cites W2011797178 @default.
- W2901661567 cites W2012765822 @default.
- W2901661567 cites W2037962563 @default.
- W2901661567 cites W2044144232 @default.
- W2901661567 cites W2061394323 @default.
- W2901661567 cites W2075535265 @default.
- W2901661567 cites W2079009481 @default.
- W2901661567 cites W2088995010 @default.
- W2901661567 cites W2089271818 @default.
- W2901661567 cites W2136865215 @default.
- W2901661567 cites W2192417562 @default.
- W2901661567 cites W2202557119 @default.
- W2901661567 cites W2210211295 @default.
- W2901661567 cites W2246574215 @default.
- W2901661567 cites W2281256618 @default.
- W2901661567 cites W2384058350 @default.
- W2901661567 cites W2512805308 @default.
- W2901661567 cites W2559593742 @default.
- W2901661567 cites W2580753261 @default.
- W2901661567 cites W2608106215 @default.
- W2901661567 cites W2608828129 @default.
- W2901661567 cites W2737089295 @default.
- W2901661567 cites W2765951304 @default.
- W2901661567 cites W2773364678 @default.
- W2901661567 cites W2781828396 @default.
- W2901661567 cites W2782723283 @default.
- W2901661567 cites W2789671961 @default.
- W2901661567 cites W2792540860 @default.
- W2901661567 cites W2793070123 @default.
- W2901661567 cites W2795170590 @default.
- W2901661567 cites W2801358117 @default.
- W2901661567 cites W4233417882 @default.
- W2901661567 doi "https://doi.org/10.1016/j.physb.2018.11.012" @default.
- W2901661567 hasPublicationYear "2019" @default.
- W2901661567 type Work @default.
- W2901661567 sameAs 2901661567 @default.
- W2901661567 citedByCount "18" @default.
- W2901661567 countsByYear W29016615672019 @default.
- W2901661567 countsByYear W29016615672020 @default.
- W2901661567 countsByYear W29016615672021 @default.
- W2901661567 countsByYear W29016615672022 @default.
- W2901661567 countsByYear W29016615672023 @default.
- W2901661567 crossrefType "journal-article" @default.
- W2901661567 hasAuthorship W2901661567A5062225145 @default.
- W2901661567 hasAuthorship W2901661567A5076332412 @default.
- W2901661567 hasConcept C119857082 @default.
- W2901661567 hasConcept C121332964 @default.
- W2901661567 hasConcept C136478896 @default.
- W2901661567 hasConcept C159985019 @default.
- W2901661567 hasConcept C191897082 @default.
- W2901661567 hasConcept C192562407 @default.
- W2901661567 hasConcept C193867417 @default.
- W2901661567 hasConcept C2780026712 @default.
- W2901661567 hasConcept C41008148 @default.
- W2901661567 hasConcept C41279357 @default.
- W2901661567 hasConcept C50644808 @default.
- W2901661567 hasConcept C513153333 @default.
- W2901661567 hasConcept C84655787 @default.
- W2901661567 hasConcept C94406020 @default.
- W2901661567 hasConcept C97355855 @default.
- W2901661567 hasConceptScore W2901661567C119857082 @default.
- W2901661567 hasConceptScore W2901661567C121332964 @default.
- W2901661567 hasConceptScore W2901661567C136478896 @default.
- W2901661567 hasConceptScore W2901661567C159985019 @default.
- W2901661567 hasConceptScore W2901661567C191897082 @default.
- W2901661567 hasConceptScore W2901661567C192562407 @default.
- W2901661567 hasConceptScore W2901661567C193867417 @default.
- W2901661567 hasConceptScore W2901661567C2780026712 @default.
- W2901661567 hasConceptScore W2901661567C41008148 @default.
- W2901661567 hasConceptScore W2901661567C41279357 @default.
- W2901661567 hasConceptScore W2901661567C50644808 @default.
- W2901661567 hasConceptScore W2901661567C513153333 @default.
- W2901661567 hasConceptScore W2901661567C84655787 @default.
- W2901661567 hasConceptScore W2901661567C94406020 @default.
- W2901661567 hasConceptScore W2901661567C97355855 @default.
- W2901661567 hasFunder F4320321424 @default.
- W2901661567 hasLocation W29016615671 @default.
- W2901661567 hasOpenAccess W2901661567 @default.
- W2901661567 hasPrimaryLocation W29016615671 @default.
- W2901661567 hasRelatedWork W1975951812 @default.
- W2901661567 hasRelatedWork W1983784540 @default.
- W2901661567 hasRelatedWork W1985736504 @default.