Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901678390> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2901678390 abstract "Summary Image denoising based on convolutional neural networks and wavelet transform is a novel approach for the applications. In the image acquisition process, images are often contaminated by noise, which affects the image quality; therefore, it is necessary to eliminate noise before analyzing and using images. Wavelet analysis is a local analysis method with multi‐resolution characteristics, which is developed on the basis of short‐time Fourier transform. It can be used for the multi‐scale analysis of signals by means of expansion, translation and other operations, and extracting effective information from signals, which is a powerful tool for analyzing non‐stationary signals. Wavelet has good time‐frequency local characteristics, low entropy, and decorrelation. In this paper, we propose MRI image denoising framework based on convolutional neural networks and wavelet transform, and the experiment results show that the proposed method can keep the edge and curvature structure better while denoising. Compared with the other novel methodologies, the proposed algorithm can provide the higher robustness. In the future research, we will try the implementations of the methodologies." @default.
- W2901678390 created "2018-11-29" @default.
- W2901678390 creator A5034956382 @default.
- W2901678390 creator A5052787170 @default.
- W2901678390 creator A5061199268 @default.
- W2901678390 creator A5071771834 @default.
- W2901678390 date "2018-11-13" @default.
- W2901678390 modified "2023-10-12" @default.
- W2901678390 title "<i>Retracted:</i> Complex image denoising framework with CNN‐wavelet under concurrency scenarios for informatics systems" @default.
- W2901678390 cites W1495458911 @default.
- W2901678390 cites W1558860961 @default.
- W2901678390 cites W1575655309 @default.
- W2901678390 cites W1840899910 @default.
- W2901678390 cites W1963917576 @default.
- W2901678390 cites W1964290461 @default.
- W2901678390 cites W1966612987 @default.
- W2901678390 cites W1974438823 @default.
- W2901678390 cites W1975752945 @default.
- W2901678390 cites W2000964588 @default.
- W2901678390 cites W2001697618 @default.
- W2901678390 cites W200948440 @default.
- W2901678390 cites W2011404346 @default.
- W2901678390 cites W2014940628 @default.
- W2901678390 cites W2025759276 @default.
- W2901678390 cites W2029630915 @default.
- W2901678390 cites W2038016146 @default.
- W2901678390 cites W2039397561 @default.
- W2901678390 cites W2043615441 @default.
- W2901678390 cites W2050085890 @default.
- W2901678390 cites W2053349480 @default.
- W2901678390 cites W2059424622 @default.
- W2901678390 cites W2064556594 @default.
- W2901678390 cites W2079391416 @default.
- W2901678390 cites W2082304850 @default.
- W2901678390 cites W2089589639 @default.
- W2901678390 cites W2092824880 @default.
- W2901678390 cites W2103639395 @default.
- W2901678390 cites W2118771507 @default.
- W2901678390 cites W2125993358 @default.
- W2901678390 cites W2138669033 @default.
- W2901678390 cites W2155654390 @default.
- W2901678390 cites W2162102990 @default.
- W2901678390 cites W2208095672 @default.
- W2901678390 cites W2237803447 @default.
- W2901678390 cites W2292999898 @default.
- W2901678390 cites W2338249037 @default.
- W2901678390 cites W2350331664 @default.
- W2901678390 cites W2405535704 @default.
- W2901678390 cites W2538631613 @default.
- W2901678390 doi "https://doi.org/10.1002/cpe.5059" @default.
- W2901678390 hasPublicationYear "2018" @default.
- W2901678390 type Work @default.
- W2901678390 sameAs 2901678390 @default.
- W2901678390 citedByCount "2" @default.
- W2901678390 countsByYear W29016783902019 @default.
- W2901678390 countsByYear W29016783902023 @default.
- W2901678390 crossrefType "journal-article" @default.
- W2901678390 hasAuthorship W2901678390A5034956382 @default.
- W2901678390 hasAuthorship W2901678390A5052787170 @default.
- W2901678390 hasAuthorship W2901678390A5061199268 @default.
- W2901678390 hasAuthorship W2901678390A5071771834 @default.
- W2901678390 hasConcept C153180895 @default.
- W2901678390 hasConcept C154945302 @default.
- W2901678390 hasConcept C163294075 @default.
- W2901678390 hasConcept C177860922 @default.
- W2901678390 hasConcept C196216189 @default.
- W2901678390 hasConcept C31972630 @default.
- W2901678390 hasConcept C41008148 @default.
- W2901678390 hasConcept C46286280 @default.
- W2901678390 hasConcept C47432892 @default.
- W2901678390 hasConcept C81363708 @default.
- W2901678390 hasConceptScore W2901678390C153180895 @default.
- W2901678390 hasConceptScore W2901678390C154945302 @default.
- W2901678390 hasConceptScore W2901678390C163294075 @default.
- W2901678390 hasConceptScore W2901678390C177860922 @default.
- W2901678390 hasConceptScore W2901678390C196216189 @default.
- W2901678390 hasConceptScore W2901678390C31972630 @default.
- W2901678390 hasConceptScore W2901678390C41008148 @default.
- W2901678390 hasConceptScore W2901678390C46286280 @default.
- W2901678390 hasConceptScore W2901678390C47432892 @default.
- W2901678390 hasConceptScore W2901678390C81363708 @default.
- W2901678390 hasIssue "12" @default.
- W2901678390 hasLocation W29016783901 @default.
- W2901678390 hasOpenAccess W2901678390 @default.
- W2901678390 hasPrimaryLocation W29016783901 @default.
- W2901678390 hasRelatedWork W1501179639 @default.
- W2901678390 hasRelatedWork W1588899229 @default.
- W2901678390 hasRelatedWork W1807354010 @default.
- W2901678390 hasRelatedWork W183670115 @default.
- W2901678390 hasRelatedWork W1918078477 @default.
- W2901678390 hasRelatedWork W2085792030 @default.
- W2901678390 hasRelatedWork W2110849729 @default.
- W2901678390 hasRelatedWork W2172291505 @default.
- W2901678390 hasRelatedWork W3143644526 @default.
- W2901678390 hasRelatedWork W3199035354 @default.
- W2901678390 hasVolume "33" @default.
- W2901678390 isParatext "false" @default.
- W2901678390 isRetracted "true" @default.
- W2901678390 magId "2901678390" @default.
- W2901678390 workType "article" @default.