Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901680650> ?p ?o ?g. }
- W2901680650 endingPage "e0207362" @default.
- W2901680650 startingPage "e0207362" @default.
- W2901680650 abstract "In this study we investigate a CT radiomics approach to predict response to chemotherapy of individual liver metastases in patients with esophagogastric cancer (EGC). In eighteen patients with metastatic EGC treated with chemotherapy, all liver metastases were manually delineated in 3D on the pre-treatment and evaluation CT. From the pre-treatment CT scans 370 radiomics features were extracted per lesion. Random forest (RF) models were generated to discriminate partial responding (PR, >65% volume decrease, including 100% volume decrease), and complete remission (CR, only 100% volume decrease) lesions from other lesions. RF-models were build using a leave one out strategy where all lesions of a single patient were removed from the dataset and used as validation set for a model trained on the lesions of the remaining patients. This process was repeated for all patients, resulting in 18 trained models and one validation set for both the PR and CR datasets. Model performance was evaluated by receiver operating characteristics with corresponding area under the curve (AUC). In total 196 liver metastases were delineated on the pre-treatment CT, of which 99 (51%) lesions showed a decrease in size of more than 65% (PR). From the PR set a total of 47 (47% of RL, 24% of initial) lesions were no longer detected in CT scan 2 (CR). The RF-model for PR lesions showed an average training AUC of 0.79 (range: 0.74–0.83) and 0.65 (95% ci: 0.57–0.73) for the combined validation set. The RF-model for CR lesions had an average training AUC of 0.87 (range: 0.83–0.90) and 0.79 (95% ci 0.72–0.87) for the validation set. Our findings show that individual response of liver metastases varies greatly within and between patients. A CT radiomics approach shows potential in discriminating responding from non-responding liver metastases based on the pre-treatment CT scan, although further validation in an independent patient cohort is needed to validate these findings." @default.
- W2901680650 created "2018-11-29" @default.
- W2901680650 creator A5008775679 @default.
- W2901680650 creator A5016336634 @default.
- W2901680650 creator A5022556537 @default.
- W2901680650 creator A5031748554 @default.
- W2901680650 creator A5045695654 @default.
- W2901680650 creator A5058987737 @default.
- W2901680650 creator A5060506055 @default.
- W2901680650 date "2018-11-15" @default.
- W2901680650 modified "2023-10-05" @default.
- W2901680650 title "Feasibility of CT radiomics to predict treatment response of individual liver metastases in esophagogastric cancer patients" @default.
- W2901680650 cites W1824790222 @default.
- W2901680650 cites W1875373156 @default.
- W2901680650 cites W1877138857 @default.
- W2901680650 cites W1965797467 @default.
- W2901680650 cites W1979659182 @default.
- W2901680650 cites W1980375472 @default.
- W2901680650 cites W1987054640 @default.
- W2901680650 cites W1996350067 @default.
- W2901680650 cites W2003304826 @default.
- W2901680650 cites W2016599848 @default.
- W2901680650 cites W2019090719 @default.
- W2901680650 cites W2019607817 @default.
- W2901680650 cites W2023415357 @default.
- W2901680650 cites W2036246634 @default.
- W2901680650 cites W2044465660 @default.
- W2901680650 cites W2052507258 @default.
- W2901680650 cites W2057152846 @default.
- W2901680650 cites W2078271269 @default.
- W2901680650 cites W2078646154 @default.
- W2901680650 cites W2096900586 @default.
- W2901680650 cites W2097780199 @default.
- W2901680650 cites W2100439220 @default.
- W2901680650 cites W2103004421 @default.
- W2901680650 cites W2106787323 @default.
- W2901680650 cites W2107773340 @default.
- W2901680650 cites W2111237964 @default.
- W2901680650 cites W2128275141 @default.
- W2901680650 cites W2128328462 @default.
- W2901680650 cites W2128739912 @default.
- W2901680650 cites W2129907865 @default.
- W2901680650 cites W2142068201 @default.
- W2901680650 cites W2149523891 @default.
- W2901680650 cites W2159799895 @default.
- W2901680650 cites W2227602841 @default.
- W2901680650 cites W2398056625 @default.
- W2901680650 cites W2473669542 @default.
- W2901680650 cites W2512765729 @default.
- W2901680650 cites W2513087893 @default.
- W2901680650 cites W2515855141 @default.
- W2901680650 cites W2517804208 @default.
- W2901680650 cites W2579949149 @default.
- W2901680650 cites W2593482127 @default.
- W2901680650 cites W2610601822 @default.
- W2901680650 cites W2628914529 @default.
- W2901680650 cites W2734463838 @default.
- W2901680650 cites W2737453412 @default.
- W2901680650 cites W2753416097 @default.
- W2901680650 cites W2763355946 @default.
- W2901680650 cites W2794458484 @default.
- W2901680650 cites W2795656336 @default.
- W2901680650 cites W283432776 @default.
- W2901680650 doi "https://doi.org/10.1371/journal.pone.0207362" @default.
- W2901680650 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6237370" @default.
- W2901680650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30440002" @default.
- W2901680650 hasPublicationYear "2018" @default.
- W2901680650 type Work @default.
- W2901680650 sameAs 2901680650 @default.
- W2901680650 citedByCount "29" @default.
- W2901680650 countsByYear W29016806502019 @default.
- W2901680650 countsByYear W29016806502020 @default.
- W2901680650 countsByYear W29016806502021 @default.
- W2901680650 countsByYear W29016806502022 @default.
- W2901680650 countsByYear W29016806502023 @default.
- W2901680650 crossrefType "journal-article" @default.
- W2901680650 hasAuthorship W2901680650A5008775679 @default.
- W2901680650 hasAuthorship W2901680650A5016336634 @default.
- W2901680650 hasAuthorship W2901680650A5022556537 @default.
- W2901680650 hasAuthorship W2901680650A5031748554 @default.
- W2901680650 hasAuthorship W2901680650A5045695654 @default.
- W2901680650 hasAuthorship W2901680650A5058987737 @default.
- W2901680650 hasAuthorship W2901680650A5060506055 @default.
- W2901680650 hasBestOaLocation W29016806501 @default.
- W2901680650 hasConcept C121608353 @default.
- W2901680650 hasConcept C126322002 @default.
- W2901680650 hasConcept C126838900 @default.
- W2901680650 hasConcept C142724271 @default.
- W2901680650 hasConcept C2776231280 @default.
- W2901680650 hasConcept C2776694085 @default.
- W2901680650 hasConcept C2778559731 @default.
- W2901680650 hasConcept C2778822529 @default.
- W2901680650 hasConcept C2779984678 @default.
- W2901680650 hasConcept C2781156865 @default.
- W2901680650 hasConcept C2989005 @default.
- W2901680650 hasConcept C58471807 @default.
- W2901680650 hasConcept C71924100 @default.
- W2901680650 hasConcept C76318530 @default.