Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901705472> ?p ?o ?g. }
- W2901705472 abstract "Fuzzy c-means (FCM) clustering as one of the clustering method is widely used in image segmentation field, but some methods based on FCM are unable to obtain satisfactory performance for image segmentation under intense noise condition. This paper presents a novel local spatial information based fuzzy c-means clustering and Markov random field method for image segmentation. In the method, a new dissimilarity function is proposed by using the prior relationship degree and local neighbor distances, which enhances its resistance to noise. And a novel prior probability approximation is considered with spatial Euclidean distance and the difference of the mean color level between the center pixel and its neighborhoods. Experiments over synthetic images, real-world images and brain MR images indicate that the proposed method obtains better segmentation performance, compared to the FCM extended methods." @default.
- W2901705472 created "2018-11-29" @default.
- W2901705472 creator A5004020657 @default.
- W2901705472 creator A5036563779 @default.
- W2901705472 date "2018-01-01" @default.
- W2901705472 modified "2023-09-27" @default.
- W2901705472 title "Adaptive Fuzzy Clustering Algorithm with Local Information and Markov Random Field for Image Segmentation" @default.
- W2901705472 cites W1510047790 @default.
- W2901705472 cites W1964069486 @default.
- W2901705472 cites W2039431682 @default.
- W2901705472 cites W2041362950 @default.
- W2901705472 cites W2045392528 @default.
- W2901705472 cites W2050089483 @default.
- W2901705472 cites W2058063871 @default.
- W2901705472 cites W2070813603 @default.
- W2901705472 cites W2081549451 @default.
- W2901705472 cites W2115242586 @default.
- W2901705472 cites W2118136617 @default.
- W2901705472 cites W2125297725 @default.
- W2901705472 cites W2151862703 @default.
- W2901705472 cites W2165012164 @default.
- W2901705472 cites W2211564018 @default.
- W2901705472 cites W2473655448 @default.
- W2901705472 cites W2494395359 @default.
- W2901705472 cites W2568866617 @default.
- W2901705472 cites W2592474909 @default.
- W2901705472 cites W2620660154 @default.
- W2901705472 cites W2747455138 @default.
- W2901705472 cites W2769182258 @default.
- W2901705472 cites W94430685 @default.
- W2901705472 cites W1996664480 @default.
- W2901705472 doi "https://doi.org/10.1007/978-3-030-04212-7_15" @default.
- W2901705472 hasPublicationYear "2018" @default.
- W2901705472 type Work @default.
- W2901705472 sameAs 2901705472 @default.
- W2901705472 citedByCount "1" @default.
- W2901705472 countsByYear W29017054722020 @default.
- W2901705472 crossrefType "book-chapter" @default.
- W2901705472 hasAuthorship W2901705472A5004020657 @default.
- W2901705472 hasAuthorship W2901705472A5036563779 @default.
- W2901705472 hasConcept C104047586 @default.
- W2901705472 hasConcept C115961682 @default.
- W2901705472 hasConcept C119857082 @default.
- W2901705472 hasConcept C120174047 @default.
- W2901705472 hasConcept C124504099 @default.
- W2901705472 hasConcept C153180895 @default.
- W2901705472 hasConcept C154945302 @default.
- W2901705472 hasConcept C17212007 @default.
- W2901705472 hasConcept C25694479 @default.
- W2901705472 hasConcept C2778045648 @default.
- W2901705472 hasConcept C31972630 @default.
- W2901705472 hasConcept C41008148 @default.
- W2901705472 hasConcept C44859942 @default.
- W2901705472 hasConcept C58166 @default.
- W2901705472 hasConcept C65885262 @default.
- W2901705472 hasConcept C73555534 @default.
- W2901705472 hasConcept C89600930 @default.
- W2901705472 hasConcept C98763669 @default.
- W2901705472 hasConcept C99498987 @default.
- W2901705472 hasConceptScore W2901705472C104047586 @default.
- W2901705472 hasConceptScore W2901705472C115961682 @default.
- W2901705472 hasConceptScore W2901705472C119857082 @default.
- W2901705472 hasConceptScore W2901705472C120174047 @default.
- W2901705472 hasConceptScore W2901705472C124504099 @default.
- W2901705472 hasConceptScore W2901705472C153180895 @default.
- W2901705472 hasConceptScore W2901705472C154945302 @default.
- W2901705472 hasConceptScore W2901705472C17212007 @default.
- W2901705472 hasConceptScore W2901705472C25694479 @default.
- W2901705472 hasConceptScore W2901705472C2778045648 @default.
- W2901705472 hasConceptScore W2901705472C31972630 @default.
- W2901705472 hasConceptScore W2901705472C41008148 @default.
- W2901705472 hasConceptScore W2901705472C44859942 @default.
- W2901705472 hasConceptScore W2901705472C58166 @default.
- W2901705472 hasConceptScore W2901705472C65885262 @default.
- W2901705472 hasConceptScore W2901705472C73555534 @default.
- W2901705472 hasConceptScore W2901705472C89600930 @default.
- W2901705472 hasConceptScore W2901705472C98763669 @default.
- W2901705472 hasConceptScore W2901705472C99498987 @default.
- W2901705472 hasLocation W29017054721 @default.
- W2901705472 hasOpenAccess W2901705472 @default.
- W2901705472 hasPrimaryLocation W29017054721 @default.
- W2901705472 hasRelatedWork W1535984234 @default.
- W2901705472 hasRelatedWork W1636440088 @default.
- W2901705472 hasRelatedWork W1978459110 @default.
- W2901705472 hasRelatedWork W2007977450 @default.
- W2901705472 hasRelatedWork W2052018470 @default.
- W2901705472 hasRelatedWork W2076119612 @default.
- W2901705472 hasRelatedWork W2116802373 @default.
- W2901705472 hasRelatedWork W2123477989 @default.
- W2901705472 hasRelatedWork W2146479507 @default.
- W2901705472 hasRelatedWork W2168778155 @default.
- W2901705472 hasRelatedWork W2186142374 @default.
- W2901705472 hasRelatedWork W2271332342 @default.
- W2901705472 hasRelatedWork W2349479255 @default.
- W2901705472 hasRelatedWork W2357552459 @default.
- W2901705472 hasRelatedWork W2357998295 @default.
- W2901705472 hasRelatedWork W2358882584 @default.
- W2901705472 hasRelatedWork W2373303464 @default.
- W2901705472 hasRelatedWork W2386211252 @default.
- W2901705472 hasRelatedWork W2542116330 @default.