Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901710360> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2901710360 abstract "User review mining has attracted many researchers to analyze and develop innovative models. The models provide technical recommendation for software developers to make decisions during software maintenance a software evolution. One of the recommendations is user review categorization. There are many categorizations have been popularly used, namely bug errors, feature requests, and noninformative. There are many methods that have been done to classify user reviews. One of the classification methods is Latent Dirichlet Allocation (LDA). LDA is a topic modelling method which ables to map hidden topics resided in a document. Thus, one of techniques to map hidden topics into categories is calculating term similarity value between hidden topic and the pre-defined signifier term list. However, the limited signifier term list of each category becomes a problem. Meanwhile Term Frequency-Inverse Corpus Frequency (TF-ICF) is able to take important terms on a cluster. Therefore, this paper introduces a method that combines TF-ICF with LDA clustering based on similarity (LDAS TF-ICF) to overcome it. The classification results were calculated by using precision, recall, and F1-score. The results show the method can outperform LDA. The best performance of LDAS TF-ICF occured when 75% expanded term list was used, given the precision, recall, dan f-measure values 0.564, 0.507, and 0.491, respectively." @default.
- W2901710360 created "2018-11-29" @default.
- W2901710360 creator A5008798505 @default.
- W2901710360 creator A5065837975 @default.
- W2901710360 creator A5076771742 @default.
- W2901710360 date "2018-07-01" @default.
- W2901710360 modified "2023-10-01" @default.
- W2901710360 title "Mobile App Review Labeling Using LDA Similarity and Term Frequency-Inverse Cluster Frequency (TF-ICF)" @default.
- W2901710360 cites W1916584426 @default.
- W2901710360 cites W1985266020 @default.
- W2901710360 cites W1988772356 @default.
- W2901710360 cites W1988939740 @default.
- W2901710360 cites W2044429219 @default.
- W2901710360 cites W2063675891 @default.
- W2901710360 cites W2112143630 @default.
- W2901710360 cites W2121043186 @default.
- W2901710360 cites W2160660844 @default.
- W2901710360 cites W2164072581 @default.
- W2901710360 cites W2165236847 @default.
- W2901710360 cites W2469508028 @default.
- W2901710360 cites W2522408729 @default.
- W2901710360 doi "https://doi.org/10.1109/iciteed.2018.8534785" @default.
- W2901710360 hasPublicationYear "2018" @default.
- W2901710360 type Work @default.
- W2901710360 sameAs 2901710360 @default.
- W2901710360 citedByCount "7" @default.
- W2901710360 countsByYear W29017103602019 @default.
- W2901710360 countsByYear W29017103602021 @default.
- W2901710360 countsByYear W29017103602022 @default.
- W2901710360 countsByYear W29017103602023 @default.
- W2901710360 crossrefType "proceedings-article" @default.
- W2901710360 hasAuthorship W2901710360A5008798505 @default.
- W2901710360 hasAuthorship W2901710360A5065837975 @default.
- W2901710360 hasAuthorship W2901710360A5076771742 @default.
- W2901710360 hasConcept C103278499 @default.
- W2901710360 hasConcept C115961682 @default.
- W2901710360 hasConcept C119857082 @default.
- W2901710360 hasConcept C121332964 @default.
- W2901710360 hasConcept C124101348 @default.
- W2901710360 hasConcept C153180895 @default.
- W2901710360 hasConcept C154945302 @default.
- W2901710360 hasConcept C171686336 @default.
- W2901710360 hasConcept C199360897 @default.
- W2901710360 hasConcept C23123220 @default.
- W2901710360 hasConcept C2777904410 @default.
- W2901710360 hasConcept C41008148 @default.
- W2901710360 hasConcept C500882744 @default.
- W2901710360 hasConcept C61797465 @default.
- W2901710360 hasConcept C62520636 @default.
- W2901710360 hasConcept C73555534 @default.
- W2901710360 hasConcept C81758059 @default.
- W2901710360 hasConcept C94124525 @default.
- W2901710360 hasConceptScore W2901710360C103278499 @default.
- W2901710360 hasConceptScore W2901710360C115961682 @default.
- W2901710360 hasConceptScore W2901710360C119857082 @default.
- W2901710360 hasConceptScore W2901710360C121332964 @default.
- W2901710360 hasConceptScore W2901710360C124101348 @default.
- W2901710360 hasConceptScore W2901710360C153180895 @default.
- W2901710360 hasConceptScore W2901710360C154945302 @default.
- W2901710360 hasConceptScore W2901710360C171686336 @default.
- W2901710360 hasConceptScore W2901710360C199360897 @default.
- W2901710360 hasConceptScore W2901710360C23123220 @default.
- W2901710360 hasConceptScore W2901710360C2777904410 @default.
- W2901710360 hasConceptScore W2901710360C41008148 @default.
- W2901710360 hasConceptScore W2901710360C500882744 @default.
- W2901710360 hasConceptScore W2901710360C61797465 @default.
- W2901710360 hasConceptScore W2901710360C62520636 @default.
- W2901710360 hasConceptScore W2901710360C73555534 @default.
- W2901710360 hasConceptScore W2901710360C81758059 @default.
- W2901710360 hasConceptScore W2901710360C94124525 @default.
- W2901710360 hasLocation W29017103601 @default.
- W2901710360 hasOpenAccess W2901710360 @default.
- W2901710360 hasPrimaryLocation W29017103601 @default.
- W2901710360 hasRelatedWork W1553232534 @default.
- W2901710360 hasRelatedWork W2296364830 @default.
- W2901710360 hasRelatedWork W2370554703 @default.
- W2901710360 hasRelatedWork W2465240115 @default.
- W2901710360 hasRelatedWork W3000448700 @default.
- W2901710360 hasRelatedWork W3106840321 @default.
- W2901710360 hasRelatedWork W3135248030 @default.
- W2901710360 hasRelatedWork W3204681432 @default.
- W2901710360 hasRelatedWork W70230128 @default.
- W2901710360 hasRelatedWork W2172446564 @default.
- W2901710360 isParatext "false" @default.
- W2901710360 isRetracted "false" @default.
- W2901710360 magId "2901710360" @default.
- W2901710360 workType "article" @default.