Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901719563> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2901719563 abstract "Cyber-manufacturing system (CMS) offers a blueprint for future manufacturing systems in which physical components are fully integrated with computational processes in a connected environment. Similar concepts and visions have been developed to different extents and under different names—“Industrie 4.0” in Germany, “Monozukuri” in Japan, “Factories of the Future” in the EU, and “Industrial Internet” by GE. However, CMS opens a door for cyber–physical attacks on manufacturing systems. Current computer and information security methods—firewalls and intrusion detection system (IDS), etc.—cannot detect the malicious attacks in CMS with adequate response time and accuracy. Realization of the promising CMS depends on addressing cyber–physical security issues effectively. These attacks can cause physical damages to physical components—machines, equipment, parts, assemblies, products—through over-wearing, breakage, scrap parts or other changes that designers did not intend. This research proposes a conceptual design of a system to detect cyber–physical intrusions in CMS. To accomplish this objective, physical data from the manufacturing process level and production system level are integrated with cyber data from network-based and host-based IDSs. The correlations between the cyber and physical data are analyzed. Machine learning methods are adapted to detect the intrusions. Three-dimensional (3D) printing and computer numerical control (CNC) milling process are used as examples of manufacturing processes for detecting cyber–physical attacks. A cyber–physical attack scenario is presented with preliminary results to illustrate how the system can be used." @default.
- W2901719563 created "2018-11-29" @default.
- W2901719563 creator A5004112970 @default.
- W2901719563 creator A5039696411 @default.
- W2901719563 date "2019-01-22" @default.
- W2901719563 modified "2023-09-27" @default.
- W2901719563 title "Intrusion Detection System for Cyber-Manufacturing System" @default.
- W2901719563 cites W1481376396 @default.
- W2901719563 cites W1489073918 @default.
- W2901719563 cites W1740146815 @default.
- W2901719563 cites W1982359930 @default.
- W2901719563 cites W2026708242 @default.
- W2901719563 cites W2032614950 @default.
- W2901719563 cites W2039427951 @default.
- W2901719563 cites W2063919557 @default.
- W2901719563 cites W2065890363 @default.
- W2901719563 cites W2073228532 @default.
- W2901719563 cites W2082406308 @default.
- W2901719563 cites W2110837847 @default.
- W2901719563 cites W2116419385 @default.
- W2901719563 cites W2122646361 @default.
- W2901719563 cites W2145722235 @default.
- W2901719563 cites W2161630727 @default.
- W2901719563 cites W2210563311 @default.
- W2901719563 cites W2474167986 @default.
- W2901719563 cites W2517723570 @default.
- W2901719563 cites W2523414668 @default.
- W2901719563 cites W2535058934 @default.
- W2901719563 cites W2537385619 @default.
- W2901719563 cites W2542534661 @default.
- W2901719563 cites W2547945433 @default.
- W2901719563 cites W2587631633 @default.
- W2901719563 cites W2591507999 @default.
- W2901719563 cites W2619263430 @default.
- W2901719563 cites W2619560268 @default.
- W2901719563 cites W2619672494 @default.
- W2901719563 cites W2762896187 @default.
- W2901719563 cites W2777352406 @default.
- W2901719563 cites W2886352053 @default.
- W2901719563 cites W4250878893 @default.
- W2901719563 cites W433644524 @default.
- W2901719563 doi "https://doi.org/10.1115/1.4042053" @default.
- W2901719563 hasPublicationYear "2019" @default.
- W2901719563 type Work @default.
- W2901719563 sameAs 2901719563 @default.
- W2901719563 citedByCount "17" @default.
- W2901719563 countsByYear W29017195632019 @default.
- W2901719563 countsByYear W29017195632020 @default.
- W2901719563 countsByYear W29017195632021 @default.
- W2901719563 countsByYear W29017195632022 @default.
- W2901719563 countsByYear W29017195632023 @default.
- W2901719563 crossrefType "journal-article" @default.
- W2901719563 hasAuthorship W2901719563A5004112970 @default.
- W2901719563 hasAuthorship W2901719563A5039696411 @default.
- W2901719563 hasConcept C111919701 @default.
- W2901719563 hasConcept C127413603 @default.
- W2901719563 hasConcept C179768478 @default.
- W2901719563 hasConcept C201995342 @default.
- W2901719563 hasConcept C35525427 @default.
- W2901719563 hasConcept C38652104 @default.
- W2901719563 hasConcept C41008148 @default.
- W2901719563 hasConcept C98045186 @default.
- W2901719563 hasConceptScore W2901719563C111919701 @default.
- W2901719563 hasConceptScore W2901719563C127413603 @default.
- W2901719563 hasConceptScore W2901719563C179768478 @default.
- W2901719563 hasConceptScore W2901719563C201995342 @default.
- W2901719563 hasConceptScore W2901719563C35525427 @default.
- W2901719563 hasConceptScore W2901719563C38652104 @default.
- W2901719563 hasConceptScore W2901719563C41008148 @default.
- W2901719563 hasConceptScore W2901719563C98045186 @default.
- W2901719563 hasIssue "3" @default.
- W2901719563 hasLocation W29017195631 @default.
- W2901719563 hasOpenAccess W2901719563 @default.
- W2901719563 hasPrimaryLocation W29017195631 @default.
- W2901719563 hasRelatedWork W2351252967 @default.
- W2901719563 hasRelatedWork W2371474181 @default.
- W2901719563 hasRelatedWork W2374211671 @default.
- W2901719563 hasRelatedWork W2382213052 @default.
- W2901719563 hasRelatedWork W2388271354 @default.
- W2901719563 hasRelatedWork W2899084033 @default.
- W2901719563 hasRelatedWork W2908278544 @default.
- W2901719563 hasRelatedWork W3043172660 @default.
- W2901719563 hasRelatedWork W4312722626 @default.
- W2901719563 hasRelatedWork W4316658607 @default.
- W2901719563 hasVolume "141" @default.
- W2901719563 isParatext "false" @default.
- W2901719563 isRetracted "false" @default.
- W2901719563 magId "2901719563" @default.
- W2901719563 workType "article" @default.