Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901721997> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2901721997 abstract "Software systems naturally evolve, and this evolution often brings design problems that cause system degradation. Architectural smells are typical symptoms of such problems, and several of these smells are related to undesired dependencies among modules. The early detection of these smells is important for developers, because they can plan ahead for maintenance or refactoring efforts, thus preventing system degradation. Existing tools for identifying architectural smells can detect the smells once they exist in the source code. This means that their undesired dependencies are already created. In this work, we explore a forward-looking approach that is able to infer groups of likely module dependencies that can anticipate architectural smells in a future system version. Our approach considers the current module structure as a network, along with information from previous versions, and applies link prediction techniques (from the field of social network analysis). In particular, we focus on dependency-related smells, such as Cyclic Dependency and Hub-like Dependency, which fit well with the link prediction model. An initial evaluation with two open-source projects shows that, under certain considerations, the predictions of our approach are satisfactory. Furthermore, the approach can be extended to other types of dependency-based smells or metrics." @default.
- W2901721997 created "2018-11-29" @default.
- W2901721997 creator A5004741967 @default.
- W2901721997 creator A5072765358 @default.
- W2901721997 creator A5089491084 @default.
- W2901721997 date "2018-09-01" @default.
- W2901721997 modified "2023-10-14" @default.
- W2901721997 title "[Research Paper] Towards Anticipation of Architectural Smells Using Link Prediction Techniques" @default.
- W2901721997 cites W1556758605 @default.
- W2901721997 cites W1933119144 @default.
- W2901721997 cites W1963863842 @default.
- W2901721997 cites W2004833623 @default.
- W2901721997 cites W2005568930 @default.
- W2901721997 cites W2022695357 @default.
- W2901721997 cites W2068521941 @default.
- W2901721997 cites W2083104366 @default.
- W2901721997 cites W2089132965 @default.
- W2901721997 cites W2130354913 @default.
- W2901721997 cites W2135198476 @default.
- W2901721997 cites W2240668632 @default.
- W2901721997 cites W2243758620 @default.
- W2901721997 cites W2403793401 @default.
- W2901721997 cites W2950337350 @default.
- W2901721997 cites W4232932184 @default.
- W2901721997 cites W4249777822 @default.
- W2901721997 doi "https://doi.org/10.1109/scam.2018.00015" @default.
- W2901721997 hasPublicationYear "2018" @default.
- W2901721997 type Work @default.
- W2901721997 sameAs 2901721997 @default.
- W2901721997 citedByCount "4" @default.
- W2901721997 countsByYear W29017219972020 @default.
- W2901721997 countsByYear W29017219972022 @default.
- W2901721997 countsByYear W29017219972023 @default.
- W2901721997 crossrefType "proceedings-article" @default.
- W2901721997 hasAuthorship W2901721997A5004741967 @default.
- W2901721997 hasAuthorship W2901721997A5072765358 @default.
- W2901721997 hasAuthorship W2901721997A5089491084 @default.
- W2901721997 hasConcept C101317890 @default.
- W2901721997 hasConcept C115903868 @default.
- W2901721997 hasConcept C117447612 @default.
- W2901721997 hasConcept C133237599 @default.
- W2901721997 hasConcept C149091818 @default.
- W2901721997 hasConcept C152752567 @default.
- W2901721997 hasConcept C154945302 @default.
- W2901721997 hasConcept C176777502 @default.
- W2901721997 hasConcept C19768560 @default.
- W2901721997 hasConcept C199360897 @default.
- W2901721997 hasConcept C2777904410 @default.
- W2901721997 hasConcept C41008148 @default.
- W2901721997 hasConcept C529173508 @default.
- W2901721997 hasConceptScore W2901721997C101317890 @default.
- W2901721997 hasConceptScore W2901721997C115903868 @default.
- W2901721997 hasConceptScore W2901721997C117447612 @default.
- W2901721997 hasConceptScore W2901721997C133237599 @default.
- W2901721997 hasConceptScore W2901721997C149091818 @default.
- W2901721997 hasConceptScore W2901721997C152752567 @default.
- W2901721997 hasConceptScore W2901721997C154945302 @default.
- W2901721997 hasConceptScore W2901721997C176777502 @default.
- W2901721997 hasConceptScore W2901721997C19768560 @default.
- W2901721997 hasConceptScore W2901721997C199360897 @default.
- W2901721997 hasConceptScore W2901721997C2777904410 @default.
- W2901721997 hasConceptScore W2901721997C41008148 @default.
- W2901721997 hasConceptScore W2901721997C529173508 @default.
- W2901721997 hasLocation W29017219971 @default.
- W2901721997 hasOpenAccess W2901721997 @default.
- W2901721997 hasPrimaryLocation W29017219971 @default.
- W2901721997 hasRelatedWork W2015418718 @default.
- W2901721997 hasRelatedWork W2088986462 @default.
- W2901721997 hasRelatedWork W2091064206 @default.
- W2901721997 hasRelatedWork W2780981476 @default.
- W2901721997 hasRelatedWork W2946499381 @default.
- W2901721997 hasRelatedWork W2955607951 @default.
- W2901721997 hasRelatedWork W3166181464 @default.
- W2901721997 hasRelatedWork W4385569644 @default.
- W2901721997 hasRelatedWork W1938356314 @default.
- W2901721997 hasRelatedWork W2187939805 @default.
- W2901721997 isParatext "false" @default.
- W2901721997 isRetracted "false" @default.
- W2901721997 magId "2901721997" @default.
- W2901721997 workType "article" @default.