Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901726430> ?p ?o ?g. }
- W2901726430 endingPage "152" @default.
- W2901726430 startingPage "140" @default.
- W2901726430 abstract "In this paper, a big data analytic framework is introduced for processing high-frequency data stream. This framework architecture is developed by combining an advanced evolving learning algorithm namely Parsimonious Network Fuzzy Inference System (PANFIS) with MapReduce parallel computation, where PANFIS has the capability of processing data stream in large volume. Big datasets are learnt chunk by chunk by processors in MapReduce environment and the results are fused by rule merging method, that reduces the complexity of the rules. The performance measurement has been conducted, and the results are showing that the MapReduce framework along with PANFIS evolving system helps to reduce the processing time around 22 percent in average in comparison with the PANFIS algorithm without reducing performance in accuracy." @default.
- W2901726430 created "2018-11-29" @default.
- W2901726430 creator A5006355592 @default.
- W2901726430 creator A5010578654 @default.
- W2901726430 creator A5036928886 @default.
- W2901726430 creator A5039451864 @default.
- W2901726430 creator A5075765273 @default.
- W2901726430 creator A5091531578 @default.
- W2901726430 date "2018-01-01" @default.
- W2901726430 modified "2023-09-26" @default.
- W2901726430 title "Big Data Analytics based on PANFIS MapReduce" @default.
- W2901726430 cites W1570834090 @default.
- W2901726430 cites W1966860954 @default.
- W2901726430 cites W1975930001 @default.
- W2901726430 cites W1999860347 @default.
- W2901726430 cites W2011911693 @default.
- W2901726430 cites W2013344760 @default.
- W2901726430 cites W2013845289 @default.
- W2901726430 cites W2017855273 @default.
- W2901726430 cites W2036485694 @default.
- W2901726430 cites W2040263621 @default.
- W2901726430 cites W2048144284 @default.
- W2901726430 cites W2052345845 @default.
- W2901726430 cites W2057974719 @default.
- W2901726430 cites W2061451531 @default.
- W2901726430 cites W2062706881 @default.
- W2901726430 cites W2081988057 @default.
- W2901726430 cites W2093768254 @default.
- W2901726430 cites W2109574129 @default.
- W2901726430 cites W2116119284 @default.
- W2901726430 cites W2123297508 @default.
- W2901726430 cites W2123947647 @default.
- W2901726430 cites W2129013743 @default.
- W2901726430 cites W2153196467 @default.
- W2901726430 cites W2162635690 @default.
- W2901726430 cites W2170936641 @default.
- W2901726430 cites W2173213060 @default.
- W2901726430 cites W2415111748 @default.
- W2901726430 cites W2528980099 @default.
- W2901726430 cites W2570437639 @default.
- W2901726430 doi "https://doi.org/10.1016/j.procs.2018.10.514" @default.
- W2901726430 hasPublicationYear "2018" @default.
- W2901726430 type Work @default.
- W2901726430 sameAs 2901726430 @default.
- W2901726430 citedByCount "3" @default.
- W2901726430 countsByYear W29017264302019 @default.
- W2901726430 countsByYear W29017264302020 @default.
- W2901726430 countsByYear W29017264302023 @default.
- W2901726430 crossrefType "journal-article" @default.
- W2901726430 hasAuthorship W2901726430A5006355592 @default.
- W2901726430 hasAuthorship W2901726430A5010578654 @default.
- W2901726430 hasAuthorship W2901726430A5036928886 @default.
- W2901726430 hasAuthorship W2901726430A5039451864 @default.
- W2901726430 hasAuthorship W2901726430A5075765273 @default.
- W2901726430 hasAuthorship W2901726430A5091531578 @default.
- W2901726430 hasBestOaLocation W29017264301 @default.
- W2901726430 hasConcept C107027933 @default.
- W2901726430 hasConcept C11413529 @default.
- W2901726430 hasConcept C120314980 @default.
- W2901726430 hasConcept C121332964 @default.
- W2901726430 hasConcept C123657996 @default.
- W2901726430 hasConcept C124101348 @default.
- W2901726430 hasConcept C138827492 @default.
- W2901726430 hasConcept C142362112 @default.
- W2901726430 hasConcept C153349607 @default.
- W2901726430 hasConcept C154945302 @default.
- W2901726430 hasConcept C20556612 @default.
- W2901726430 hasConcept C2776214188 @default.
- W2901726430 hasConcept C2778484313 @default.
- W2901726430 hasConcept C41008148 @default.
- W2901726430 hasConcept C45374587 @default.
- W2901726430 hasConcept C62520636 @default.
- W2901726430 hasConcept C75684735 @default.
- W2901726430 hasConcept C76155785 @default.
- W2901726430 hasConcept C77088390 @default.
- W2901726430 hasConcept C79158427 @default.
- W2901726430 hasConcept C89198739 @default.
- W2901726430 hasConceptScore W2901726430C107027933 @default.
- W2901726430 hasConceptScore W2901726430C11413529 @default.
- W2901726430 hasConceptScore W2901726430C120314980 @default.
- W2901726430 hasConceptScore W2901726430C121332964 @default.
- W2901726430 hasConceptScore W2901726430C123657996 @default.
- W2901726430 hasConceptScore W2901726430C124101348 @default.
- W2901726430 hasConceptScore W2901726430C138827492 @default.
- W2901726430 hasConceptScore W2901726430C142362112 @default.
- W2901726430 hasConceptScore W2901726430C153349607 @default.
- W2901726430 hasConceptScore W2901726430C154945302 @default.
- W2901726430 hasConceptScore W2901726430C20556612 @default.
- W2901726430 hasConceptScore W2901726430C2776214188 @default.
- W2901726430 hasConceptScore W2901726430C2778484313 @default.
- W2901726430 hasConceptScore W2901726430C41008148 @default.
- W2901726430 hasConceptScore W2901726430C45374587 @default.
- W2901726430 hasConceptScore W2901726430C62520636 @default.
- W2901726430 hasConceptScore W2901726430C75684735 @default.
- W2901726430 hasConceptScore W2901726430C76155785 @default.
- W2901726430 hasConceptScore W2901726430C77088390 @default.
- W2901726430 hasConceptScore W2901726430C79158427 @default.
- W2901726430 hasConceptScore W2901726430C89198739 @default.