Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901759693> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2901759693 abstract "With the advent of the era of big data, the image of the criminal investigation has been explosively growing. To effectively help police officers classify suspect targets, a new classification method of criminal investigation image that combines spatial convolutional neural network (SCNN) and extreme learning machine (ELM) is proposed. Firstly, the image sub-blocks of different space are obtained by a five-block preprocessing on the criminal investigation image, which is part of the original image. Secondly, different image blocks are sent to a fine-tuned convolutional neural network to extract the features of the criminal investigation image. Finally, a criminal investigation image classification algorithm called SCNN-ELM is proposed in combination with extreme learning machine. The experimental results based on 2800 real criminal investigation image database and the standard Corel 1K image database show that the proposed method has an average accuracy improvement of 7.98% compared with the image classification method based on non-blocking CNN features, and the average classification accuracy is also superior than other similar methods." @default.
- W2901759693 created "2018-11-29" @default.
- W2901759693 creator A5001543450 @default.
- W2901759693 creator A5006743312 @default.
- W2901759693 creator A5049541000 @default.
- W2901759693 creator A5060002817 @default.
- W2901759693 date "2018-08-01" @default.
- W2901759693 modified "2023-10-05" @default.
- W2901759693 title "Criminal Investigation Image Classification Based on Spatial CNN Features and ELM" @default.
- W2901759693 cites W1567302070 @default.
- W2901759693 cites W2060422862 @default.
- W2901759693 cites W2109255472 @default.
- W2901759693 cites W2112796928 @default.
- W2901759693 cites W2113634564 @default.
- W2901759693 cites W2331528551 @default.
- W2901759693 cites W2500751094 @default.
- W2901759693 cites W3103818906 @default.
- W2901759693 doi "https://doi.org/10.1109/ihmsc.2018.10173" @default.
- W2901759693 hasPublicationYear "2018" @default.
- W2901759693 type Work @default.
- W2901759693 sameAs 2901759693 @default.
- W2901759693 citedByCount "3" @default.
- W2901759693 countsByYear W29017596932021 @default.
- W2901759693 countsByYear W29017596932022 @default.
- W2901759693 countsByYear W29017596932023 @default.
- W2901759693 crossrefType "proceedings-article" @default.
- W2901759693 hasAuthorship W2901759693A5001543450 @default.
- W2901759693 hasAuthorship W2901759693A5006743312 @default.
- W2901759693 hasAuthorship W2901759693A5049541000 @default.
- W2901759693 hasAuthorship W2901759693A5060002817 @default.
- W2901759693 hasConcept C115961682 @default.
- W2901759693 hasConcept C153180895 @default.
- W2901759693 hasConcept C154945302 @default.
- W2901759693 hasConcept C2524010 @default.
- W2901759693 hasConcept C2777210771 @default.
- W2901759693 hasConcept C2780150128 @default.
- W2901759693 hasConcept C31972630 @default.
- W2901759693 hasConcept C33923547 @default.
- W2901759693 hasConcept C34736171 @default.
- W2901759693 hasConcept C41008148 @default.
- W2901759693 hasConcept C50644808 @default.
- W2901759693 hasConcept C75294576 @default.
- W2901759693 hasConcept C81363708 @default.
- W2901759693 hasConceptScore W2901759693C115961682 @default.
- W2901759693 hasConceptScore W2901759693C153180895 @default.
- W2901759693 hasConceptScore W2901759693C154945302 @default.
- W2901759693 hasConceptScore W2901759693C2524010 @default.
- W2901759693 hasConceptScore W2901759693C2777210771 @default.
- W2901759693 hasConceptScore W2901759693C2780150128 @default.
- W2901759693 hasConceptScore W2901759693C31972630 @default.
- W2901759693 hasConceptScore W2901759693C33923547 @default.
- W2901759693 hasConceptScore W2901759693C34736171 @default.
- W2901759693 hasConceptScore W2901759693C41008148 @default.
- W2901759693 hasConceptScore W2901759693C50644808 @default.
- W2901759693 hasConceptScore W2901759693C75294576 @default.
- W2901759693 hasConceptScore W2901759693C81363708 @default.
- W2901759693 hasLocation W29017596931 @default.
- W2901759693 hasOpenAccess W2901759693 @default.
- W2901759693 hasPrimaryLocation W29017596931 @default.
- W2901759693 hasRelatedWork W2148258325 @default.
- W2901759693 hasRelatedWork W2353388427 @default.
- W2901759693 hasRelatedWork W2380927352 @default.
- W2901759693 hasRelatedWork W2391959412 @default.
- W2901759693 hasRelatedWork W2767651786 @default.
- W2901759693 hasRelatedWork W2899307613 @default.
- W2901759693 hasRelatedWork W2912288872 @default.
- W2901759693 hasRelatedWork W2997394683 @default.
- W2901759693 hasRelatedWork W3052481912 @default.
- W2901759693 hasRelatedWork W1966592431 @default.
- W2901759693 isParatext "false" @default.
- W2901759693 isRetracted "false" @default.
- W2901759693 magId "2901759693" @default.
- W2901759693 workType "article" @default.