Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901764603> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2901764603 endingPage "245004" @default.
- W2901764603 startingPage "245004" @default.
- W2901764603 abstract "Existing deep-learning-based pulmonary nodule classification models usually use images and benign-malignant labels as inputs for training. Image attributes of the nodules, as human-nameable high-level semantic labels, are rarely used to build a convolutional neural network (CNN). In this paper, a new method is proposed to combine the advantages of two classifications, which are pulmonary nodule benign-malignant classification and pulmonary nodule image attributes classification, into a deep learning network to improve the accuracy of pulmonary nodule classification. For this purpose, a unique 3D CNN is built to learn image attribute and benign-malignant classification simultaneously. A novel loss function is designed to balance the influence of two different kinds of classifications. The CNN is trained by a publicly available lung image database consortium (LIDC) dataset and is tested by a cross-validation method to predict the risk of a pulmonary nodule being malignant. This proposed method generates the accuracy of 91.47%, which is better than many existing models. Experimental findings show that if the CNN is built properly, the nodule attributes classification and benign-malignant classification can benefit from each other. By using nodule attribute learning as a control factor in a deep learning scheme, the accuracy of pulmonary nodule classification can be significantly improved by using a deep learning scheme." @default.
- W2901764603 created "2018-11-29" @default.
- W2901764603 creator A5013925184 @default.
- W2901764603 creator A5045998635 @default.
- W2901764603 creator A5077263680 @default.
- W2901764603 creator A5089142096 @default.
- W2901764603 date "2018-12-10" @default.
- W2901764603 modified "2023-10-13" @default.
- W2901764603 title "Incorporating automatically learned pulmonary nodule attributes into a convolutional neural network to improve accuracy of benign-malignant nodule classification" @default.
- W2901764603 cites W1975020933 @default.
- W2901764603 cites W1999529880 @default.
- W2901764603 cites W2003370711 @default.
- W2901764603 cites W2027450193 @default.
- W2901764603 cites W2045415729 @default.
- W2901764603 cites W2048561164 @default.
- W2901764603 cites W2049674541 @default.
- W2901764603 cites W2060420023 @default.
- W2901764603 cites W2085206647 @default.
- W2901764603 cites W2114175038 @default.
- W2901764603 cites W2127248987 @default.
- W2901764603 cites W2129597285 @default.
- W2901764603 cites W2131580489 @default.
- W2901764603 cites W2155662634 @default.
- W2901764603 cites W2159068781 @default.
- W2901764603 cites W2160764363 @default.
- W2901764603 cites W2194775991 @default.
- W2901764603 cites W2311857205 @default.
- W2901764603 cites W2327068099 @default.
- W2901764603 cites W2394599079 @default.
- W2901764603 cites W2553191729 @default.
- W2901764603 cites W2593235807 @default.
- W2901764603 cites W2613475099 @default.
- W2901764603 cites W2618530766 @default.
- W2901764603 cites W2743008510 @default.
- W2901764603 cites W2963446712 @default.
- W2901764603 cites W2963553763 @default.
- W2901764603 doi "https://doi.org/10.1088/1361-6560/aaf09f" @default.
- W2901764603 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30524071" @default.
- W2901764603 hasPublicationYear "2018" @default.
- W2901764603 type Work @default.
- W2901764603 sameAs 2901764603 @default.
- W2901764603 citedByCount "14" @default.
- W2901764603 countsByYear W29017646032019 @default.
- W2901764603 countsByYear W29017646032020 @default.
- W2901764603 countsByYear W29017646032021 @default.
- W2901764603 countsByYear W29017646032022 @default.
- W2901764603 countsByYear W29017646032023 @default.
- W2901764603 crossrefType "journal-article" @default.
- W2901764603 hasAuthorship W2901764603A5013925184 @default.
- W2901764603 hasAuthorship W2901764603A5045998635 @default.
- W2901764603 hasAuthorship W2901764603A5077263680 @default.
- W2901764603 hasAuthorship W2901764603A5089142096 @default.
- W2901764603 hasConcept C108583219 @default.
- W2901764603 hasConcept C115961682 @default.
- W2901764603 hasConcept C119857082 @default.
- W2901764603 hasConcept C151730666 @default.
- W2901764603 hasConcept C153180895 @default.
- W2901764603 hasConcept C154945302 @default.
- W2901764603 hasConcept C2776731575 @default.
- W2901764603 hasConcept C41008148 @default.
- W2901764603 hasConcept C50644808 @default.
- W2901764603 hasConcept C75294576 @default.
- W2901764603 hasConcept C81363708 @default.
- W2901764603 hasConcept C86803240 @default.
- W2901764603 hasConceptScore W2901764603C108583219 @default.
- W2901764603 hasConceptScore W2901764603C115961682 @default.
- W2901764603 hasConceptScore W2901764603C119857082 @default.
- W2901764603 hasConceptScore W2901764603C151730666 @default.
- W2901764603 hasConceptScore W2901764603C153180895 @default.
- W2901764603 hasConceptScore W2901764603C154945302 @default.
- W2901764603 hasConceptScore W2901764603C2776731575 @default.
- W2901764603 hasConceptScore W2901764603C41008148 @default.
- W2901764603 hasConceptScore W2901764603C50644808 @default.
- W2901764603 hasConceptScore W2901764603C75294576 @default.
- W2901764603 hasConceptScore W2901764603C81363708 @default.
- W2901764603 hasConceptScore W2901764603C86803240 @default.
- W2901764603 hasIssue "24" @default.
- W2901764603 hasLocation W29017646031 @default.
- W2901764603 hasLocation W29017646032 @default.
- W2901764603 hasOpenAccess W2901764603 @default.
- W2901764603 hasPrimaryLocation W29017646031 @default.
- W2901764603 hasRelatedWork W2911497689 @default.
- W2901764603 hasRelatedWork W2952813363 @default.
- W2901764603 hasRelatedWork W3029198973 @default.
- W2901764603 hasRelatedWork W3133861977 @default.
- W2901764603 hasRelatedWork W3167935049 @default.
- W2901764603 hasRelatedWork W3193565141 @default.
- W2901764603 hasRelatedWork W4226493464 @default.
- W2901764603 hasRelatedWork W4312417841 @default.
- W2901764603 hasRelatedWork W4360783045 @default.
- W2901764603 hasRelatedWork W4378678253 @default.
- W2901764603 hasVolume "63" @default.
- W2901764603 isParatext "false" @default.
- W2901764603 isRetracted "false" @default.
- W2901764603 magId "2901764603" @default.
- W2901764603 workType "article" @default.