Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901784927> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2901784927 endingPage "29" @default.
- W2901784927 startingPage "16" @default.
- W2901784927 abstract "In this study, we formulate the concept of “mining maximal-size frequent subgraphs” in the challenging domain of visual data (images and videos). In general, visual knowledge can usually be modeled as attributed relational graphs (ARGs) with local attributes representing local parts and pairwise attributes describing the spatial relationship between parts. Thus, from a practical perspective, such mining of maximal-size subgraphs can be regarded as the discovery of common objects from visual data without given annotations of object bounding boxes. From a theoretical perspective, in this study, we propose a generic definition of common subgraphs among ARGs. Many previous studies can be roughly considered as special cases of the definition. In our definition, we consider 1) variations of unary/pairwise attributes among different ARGs, 2) linkage conditions of different nodes, and 3) the learning of similarity metrics for each node. The generality of our subgraph pattern proposes great challenges to the graph-mining algorithm. We propose an approximate but efficient solution to the mining problem. We conduct five experiments to evaluate our method with different kinds of visual data, including videos and RGB/RGB-D images. These experiments demonstrate the generality of the proposed method." @default.
- W2901784927 created "2018-11-29" @default.
- W2901784927 creator A5046856721 @default.
- W2901784927 creator A5053437945 @default.
- W2901784927 creator A5075393375 @default.
- W2901784927 creator A5080312761 @default.
- W2901784927 creator A5081746641 @default.
- W2901784927 date "2019-01-01" @default.
- W2901784927 modified "2023-10-05" @default.
- W2901784927 title "Visual graph mining for graph matching" @default.
- W2901784927 cites W2126969584 @default.
- W2901784927 cites W2147292045 @default.
- W2901784927 cites W2255320195 @default.
- W2901784927 doi "https://doi.org/10.1016/j.cviu.2018.11.002" @default.
- W2901784927 hasPublicationYear "2019" @default.
- W2901784927 type Work @default.
- W2901784927 sameAs 2901784927 @default.
- W2901784927 citedByCount "11" @default.
- W2901784927 countsByYear W29017849272019 @default.
- W2901784927 countsByYear W29017849272020 @default.
- W2901784927 countsByYear W29017849272021 @default.
- W2901784927 countsByYear W29017849272022 @default.
- W2901784927 countsByYear W29017849272023 @default.
- W2901784927 crossrefType "journal-article" @default.
- W2901784927 hasAuthorship W2901784927A5046856721 @default.
- W2901784927 hasAuthorship W2901784927A5053437945 @default.
- W2901784927 hasAuthorship W2901784927A5075393375 @default.
- W2901784927 hasAuthorship W2901784927A5080312761 @default.
- W2901784927 hasAuthorship W2901784927A5081746641 @default.
- W2901784927 hasConcept C105795698 @default.
- W2901784927 hasConcept C124101348 @default.
- W2901784927 hasConcept C12713177 @default.
- W2901784927 hasConcept C132525143 @default.
- W2901784927 hasConcept C153180895 @default.
- W2901784927 hasConcept C154945302 @default.
- W2901784927 hasConcept C15744967 @default.
- W2901784927 hasConcept C165064840 @default.
- W2901784927 hasConcept C184898388 @default.
- W2901784927 hasConcept C2780767217 @default.
- W2901784927 hasConcept C33923547 @default.
- W2901784927 hasConcept C41008148 @default.
- W2901784927 hasConcept C542102704 @default.
- W2901784927 hasConcept C63584917 @default.
- W2901784927 hasConcept C80444323 @default.
- W2901784927 hasConceptScore W2901784927C105795698 @default.
- W2901784927 hasConceptScore W2901784927C124101348 @default.
- W2901784927 hasConceptScore W2901784927C12713177 @default.
- W2901784927 hasConceptScore W2901784927C132525143 @default.
- W2901784927 hasConceptScore W2901784927C153180895 @default.
- W2901784927 hasConceptScore W2901784927C154945302 @default.
- W2901784927 hasConceptScore W2901784927C15744967 @default.
- W2901784927 hasConceptScore W2901784927C165064840 @default.
- W2901784927 hasConceptScore W2901784927C184898388 @default.
- W2901784927 hasConceptScore W2901784927C2780767217 @default.
- W2901784927 hasConceptScore W2901784927C33923547 @default.
- W2901784927 hasConceptScore W2901784927C41008148 @default.
- W2901784927 hasConceptScore W2901784927C542102704 @default.
- W2901784927 hasConceptScore W2901784927C63584917 @default.
- W2901784927 hasConceptScore W2901784927C80444323 @default.
- W2901784927 hasLocation W29017849271 @default.
- W2901784927 hasOpenAccess W2901784927 @default.
- W2901784927 hasPrimaryLocation W29017849271 @default.
- W2901784927 hasRelatedWork W1586450138 @default.
- W2901784927 hasRelatedWork W2010725720 @default.
- W2901784927 hasRelatedWork W2115989734 @default.
- W2901784927 hasRelatedWork W2945365184 @default.
- W2901784927 hasRelatedWork W2971267355 @default.
- W2901784927 hasRelatedWork W3033828522 @default.
- W2901784927 hasRelatedWork W4310066305 @default.
- W2901784927 hasRelatedWork W4312266567 @default.
- W2901784927 hasRelatedWork W4312816440 @default.
- W2901784927 hasRelatedWork W4383860413 @default.
- W2901784927 hasVolume "178" @default.
- W2901784927 isParatext "false" @default.
- W2901784927 isRetracted "false" @default.
- W2901784927 magId "2901784927" @default.
- W2901784927 workType "article" @default.