Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901786823> ?p ?o ?g. }
- W2901786823 endingPage "450" @default.
- W2901786823 startingPage "439" @default.
- W2901786823 abstract "ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water temperature at upper, middle and downstream of the river. To predict outlet of dissolved oxygen of the river in each station, considering different input combinations as i) 11 inputs parameters for all three locations except, dissolved oxygen at the downstream ii) 7 inputs for middle and downstream except dissolved oxygen, at the target location and lastly iii) 3 inputs for downstream location. To determine the accuracy of the model, root mean square error and determination coefficient were employed. The simulated results of dissolved oxygen at three stations indicated that, multi-linear regression is found not to be efficient for predicting dissolved oxygen. In addition, both artificial intelligence models were found to be more capable and satisfactory for the prediction. Adaptive neuro fuzzy inference system model demonstrated high prediction ability as compared to feed forward neural network model. The results indicated that adaptive neuro fuzzy inference system model has a slight increment in performance than feed forward neural network model in validation step. Adaptive neuro fuzzy inference system proved high improvement in efficiency performance over multi-linear regression modeling up to 18% in calibration phase and 27% in validation phase for the best models." @default.
- W2901786823 created "2018-11-29" @default.
- W2901786823 creator A5003077091 @default.
- W2901786823 creator A5057837749 @default.
- W2901786823 creator A5062007467 @default.
- W2901786823 creator A5089882448 @default.
- W2901786823 date "2018-10-01" @default.
- W2901786823 modified "2023-09-28" @default.
- W2901786823 title "Artificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river" @default.
- W2901786823 cites W1544154338 @default.
- W2901786823 cites W1969293821 @default.
- W2901786823 cites W1970104171 @default.
- W2901786823 cites W1980938204 @default.
- W2901786823 cites W2002011892 @default.
- W2901786823 cites W2004327769 @default.
- W2901786823 cites W2017978747 @default.
- W2901786823 cites W2025579616 @default.
- W2901786823 cites W2037460094 @default.
- W2901786823 cites W2040940481 @default.
- W2901786823 cites W2054889803 @default.
- W2901786823 cites W2066660768 @default.
- W2901786823 cites W2066996619 @default.
- W2901786823 cites W2080061349 @default.
- W2901786823 cites W2139482802 @default.
- W2901786823 cites W2140609876 @default.
- W2901786823 cites W2166074302 @default.
- W2901786823 cites W2320098985 @default.
- W2901786823 cites W2418448134 @default.
- W2901786823 cites W2550265600 @default.
- W2901786823 cites W2582647075 @default.
- W2901786823 cites W2587088850 @default.
- W2901786823 cites W2772354950 @default.
- W2901786823 cites W2775618194 @default.
- W2901786823 doi "https://doi.org/10.22034/gjesm.2018.04.005" @default.
- W2901786823 hasPublicationYear "2018" @default.
- W2901786823 type Work @default.
- W2901786823 sameAs 2901786823 @default.
- W2901786823 citedByCount "17" @default.
- W2901786823 countsByYear W29017868232019 @default.
- W2901786823 countsByYear W29017868232020 @default.
- W2901786823 countsByYear W29017868232021 @default.
- W2901786823 countsByYear W29017868232022 @default.
- W2901786823 countsByYear W29017868232023 @default.
- W2901786823 crossrefType "journal-article" @default.
- W2901786823 hasAuthorship W2901786823A5003077091 @default.
- W2901786823 hasAuthorship W2901786823A5057837749 @default.
- W2901786823 hasAuthorship W2901786823A5062007467 @default.
- W2901786823 hasAuthorship W2901786823A5089882448 @default.
- W2901786823 hasConcept C105795698 @default.
- W2901786823 hasConcept C119857082 @default.
- W2901786823 hasConcept C128990827 @default.
- W2901786823 hasConcept C139945424 @default.
- W2901786823 hasConcept C154945302 @default.
- W2901786823 hasConcept C165838908 @default.
- W2901786823 hasConcept C186060115 @default.
- W2901786823 hasConcept C186108316 @default.
- W2901786823 hasConcept C195975749 @default.
- W2901786823 hasConcept C33923547 @default.
- W2901786823 hasConcept C39432304 @default.
- W2901786823 hasConcept C41008148 @default.
- W2901786823 hasConcept C48921125 @default.
- W2901786823 hasConcept C50644808 @default.
- W2901786823 hasConcept C58166 @default.
- W2901786823 hasConcept C86803240 @default.
- W2901786823 hasConceptScore W2901786823C105795698 @default.
- W2901786823 hasConceptScore W2901786823C119857082 @default.
- W2901786823 hasConceptScore W2901786823C128990827 @default.
- W2901786823 hasConceptScore W2901786823C139945424 @default.
- W2901786823 hasConceptScore W2901786823C154945302 @default.
- W2901786823 hasConceptScore W2901786823C165838908 @default.
- W2901786823 hasConceptScore W2901786823C186060115 @default.
- W2901786823 hasConceptScore W2901786823C186108316 @default.
- W2901786823 hasConceptScore W2901786823C195975749 @default.
- W2901786823 hasConceptScore W2901786823C33923547 @default.
- W2901786823 hasConceptScore W2901786823C39432304 @default.
- W2901786823 hasConceptScore W2901786823C41008148 @default.
- W2901786823 hasConceptScore W2901786823C48921125 @default.
- W2901786823 hasConceptScore W2901786823C50644808 @default.
- W2901786823 hasConceptScore W2901786823C58166 @default.
- W2901786823 hasConceptScore W2901786823C86803240 @default.
- W2901786823 hasIssue "4" @default.
- W2901786823 hasLocation W29017868231 @default.
- W2901786823 hasOpenAccess W2901786823 @default.
- W2901786823 hasPrimaryLocation W29017868231 @default.
- W2901786823 hasRelatedWork W1984457886 @default.
- W2901786823 hasRelatedWork W1985479415 @default.
- W2901786823 hasRelatedWork W2006603423 @default.
- W2901786823 hasRelatedWork W2019207321 @default.
- W2901786823 hasRelatedWork W2037460094 @default.
- W2901786823 hasRelatedWork W2160689147 @default.
- W2901786823 hasRelatedWork W2290873233 @default.
- W2901786823 hasRelatedWork W2413338433 @default.
- W2901786823 hasRelatedWork W2418448134 @default.
- W2901786823 hasRelatedWork W2550265600 @default.
- W2901786823 hasRelatedWork W2587457795 @default.
- W2901786823 hasRelatedWork W2594837422 @default.
- W2901786823 hasRelatedWork W2610501582 @default.
- W2901786823 hasRelatedWork W2772354950 @default.