Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901809639> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2901809639 endingPage "181" @default.
- W2901809639 startingPage "170" @default.
- W2901809639 abstract "Emotion analysis, as a sub topic of sentiment analysis, crosses many fields so as philosophy, education, and psychology. Grasping the possible emotions of the public can help government develop their policies and help many businesses build their developing strategies properly. Online news services have attracted millions of web users to explicitly discuss their opinions and express their feelings towards the news. Most of the existing works are based on emotion lexicons. However, same word may trigger different emotions under different context, which makes lexicon-based methods less effective. Some works focus on predefined features for classification, which can be very labor intensive. In this paper, we build a convolutional neural network (CNN) based model to extract features that can represent both local and global information automatically. Additionally, due to the fact that most of online news share the similar word distributions and similar emotion categories, we train the neural networks on two data sets simultaneously so that the model can learn the knowledge from both dataset and benefit the classification on both data sets. In this paper, we elaborate our jointly trained CNN based model and prove its effectiveness by comparing with strong baselines." @default.
- W2901809639 created "2018-11-29" @default.
- W2901809639 creator A5000472327 @default.
- W2901809639 creator A5057917960 @default.
- W2901809639 creator A5062064974 @default.
- W2901809639 creator A5062425539 @default.
- W2901809639 date "2018-01-01" @default.
- W2901809639 modified "2023-10-01" @default.
- W2901809639 title "Jointly Trained Convolutional Neural Networks for Online News Emotion Analysis" @default.
- W2901809639 cites W1832693441 @default.
- W2901809639 cites W1977309386 @default.
- W2901809639 cites W1999320905 @default.
- W2901809639 cites W2039157612 @default.
- W2901809639 cites W2040467972 @default.
- W2901809639 cites W2045599215 @default.
- W2901809639 cites W2045631398 @default.
- W2901809639 cites W2072007696 @default.
- W2901809639 cites W2103227703 @default.
- W2901809639 cites W2105468141 @default.
- W2901809639 cites W2112796928 @default.
- W2901809639 cites W2117130368 @default.
- W2901809639 cites W2139517011 @default.
- W2901809639 cites W2164972036 @default.
- W2901809639 cites W2165008816 @default.
- W2901809639 cites W2265846598 @default.
- W2901809639 cites W2573073746 @default.
- W2901809639 cites W2962750587 @default.
- W2901809639 doi "https://doi.org/10.1007/978-3-030-02934-0_16" @default.
- W2901809639 hasPublicationYear "2018" @default.
- W2901809639 type Work @default.
- W2901809639 sameAs 2901809639 @default.
- W2901809639 citedByCount "4" @default.
- W2901809639 countsByYear W29018096392019 @default.
- W2901809639 countsByYear W29018096392020 @default.
- W2901809639 countsByYear W29018096392022 @default.
- W2901809639 crossrefType "book-chapter" @default.
- W2901809639 hasAuthorship W2901809639A5000472327 @default.
- W2901809639 hasAuthorship W2901809639A5057917960 @default.
- W2901809639 hasAuthorship W2901809639A5062064974 @default.
- W2901809639 hasAuthorship W2901809639A5062425539 @default.
- W2901809639 hasConcept C119857082 @default.
- W2901809639 hasConcept C154945302 @default.
- W2901809639 hasConcept C28490314 @default.
- W2901809639 hasConcept C41008148 @default.
- W2901809639 hasConcept C81363708 @default.
- W2901809639 hasConceptScore W2901809639C119857082 @default.
- W2901809639 hasConceptScore W2901809639C154945302 @default.
- W2901809639 hasConceptScore W2901809639C28490314 @default.
- W2901809639 hasConceptScore W2901809639C41008148 @default.
- W2901809639 hasConceptScore W2901809639C81363708 @default.
- W2901809639 hasLocation W29018096391 @default.
- W2901809639 hasOpenAccess W2901809639 @default.
- W2901809639 hasPrimaryLocation W29018096391 @default.
- W2901809639 hasRelatedWork W2337926734 @default.
- W2901809639 hasRelatedWork W2963958939 @default.
- W2901809639 hasRelatedWork W3021430260 @default.
- W2901809639 hasRelatedWork W3027997911 @default.
- W2901809639 hasRelatedWork W4287776258 @default.
- W2901809639 hasRelatedWork W4308353688 @default.
- W2901809639 hasRelatedWork W4312501200 @default.
- W2901809639 hasRelatedWork W4313050734 @default.
- W2901809639 hasRelatedWork W4319994054 @default.
- W2901809639 hasRelatedWork W4320802194 @default.
- W2901809639 isParatext "false" @default.
- W2901809639 isRetracted "false" @default.
- W2901809639 magId "2901809639" @default.
- W2901809639 workType "book-chapter" @default.