Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901814534> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2901814534 abstract "Classifying ships in satellite or aerial images is a challenging problem in remote sensing imagery. This task requires data-hungry learning algorithms (in particular deep models) that build discriminative representations which capture highly variable ship categories. As labeled training data are scarce and expensive, ship category recognition should also rely on abundant unlabeled data in order to enhance its effectiveness. In this paper, we introduce a novel representation learning algorithm based on semi-supervised attributes. Our method allows us to learn deep and discriminative image characteristics shared among different categories while taking into account both labeled and unlabeled data. We demonstrate the effectiveness of this method on the challenging ship category recognition problem and we show its out-performance with respect to related baselines, especially under the regime of scarce labeled data and abundant unlabeled ones." @default.
- W2901814534 created "2018-11-29" @default.
- W2901814534 creator A5029896607 @default.
- W2901814534 creator A5068487538 @default.
- W2901814534 date "2018-07-01" @default.
- W2901814534 modified "2023-09-25" @default.
- W2901814534 title "Semi-Supervised Deep Attribute Networks for Fine-Grained Ship Category Recognition" @default.
- W2901814534 cites W1574877594 @default.
- W2901814534 cites W1665214252 @default.
- W2901814534 cites W1965877721 @default.
- W2901814534 cites W2003059629 @default.
- W2901814534 cites W2017226600 @default.
- W2901814534 cites W2019304481 @default.
- W2901814534 cites W2027805700 @default.
- W2901814534 cites W2051434435 @default.
- W2901814534 cites W2084716923 @default.
- W2901814534 cites W2104290444 @default.
- W2901814534 cites W2112562896 @default.
- W2901814534 cites W2117539524 @default.
- W2901814534 cites W2126407450 @default.
- W2901814534 cites W2134270519 @default.
- W2901814534 cites W2145908571 @default.
- W2901814534 cites W2150430720 @default.
- W2901814534 cites W2156256829 @default.
- W2901814534 cites W2169966850 @default.
- W2901814534 cites W2312997001 @default.
- W2901814534 cites W2398955161 @default.
- W2901814534 cites W2548471756 @default.
- W2901814534 cites W2557283755 @default.
- W2901814534 cites W2587063199 @default.
- W2901814534 cites W2772349127 @default.
- W2901814534 cites W2963446712 @default.
- W2901814534 cites W2964121744 @default.
- W2901814534 cites W2999150621 @default.
- W2901814534 cites W896307183 @default.
- W2901814534 doi "https://doi.org/10.1109/igarss.2018.8517589" @default.
- W2901814534 hasPublicationYear "2018" @default.
- W2901814534 type Work @default.
- W2901814534 sameAs 2901814534 @default.
- W2901814534 citedByCount "2" @default.
- W2901814534 countsByYear W29018145342020 @default.
- W2901814534 countsByYear W29018145342021 @default.
- W2901814534 crossrefType "proceedings-article" @default.
- W2901814534 hasAuthorship W2901814534A5029896607 @default.
- W2901814534 hasAuthorship W2901814534A5068487538 @default.
- W2901814534 hasConcept C108583219 @default.
- W2901814534 hasConcept C119857082 @default.
- W2901814534 hasConcept C127413603 @default.
- W2901814534 hasConcept C153180895 @default.
- W2901814534 hasConcept C154945302 @default.
- W2901814534 hasConcept C17744445 @default.
- W2901814534 hasConcept C199539241 @default.
- W2901814534 hasConcept C201995342 @default.
- W2901814534 hasConcept C2776145971 @default.
- W2901814534 hasConcept C2776359362 @default.
- W2901814534 hasConcept C2780451532 @default.
- W2901814534 hasConcept C41008148 @default.
- W2901814534 hasConcept C59404180 @default.
- W2901814534 hasConcept C94625758 @default.
- W2901814534 hasConcept C97931131 @default.
- W2901814534 hasConceptScore W2901814534C108583219 @default.
- W2901814534 hasConceptScore W2901814534C119857082 @default.
- W2901814534 hasConceptScore W2901814534C127413603 @default.
- W2901814534 hasConceptScore W2901814534C153180895 @default.
- W2901814534 hasConceptScore W2901814534C154945302 @default.
- W2901814534 hasConceptScore W2901814534C17744445 @default.
- W2901814534 hasConceptScore W2901814534C199539241 @default.
- W2901814534 hasConceptScore W2901814534C201995342 @default.
- W2901814534 hasConceptScore W2901814534C2776145971 @default.
- W2901814534 hasConceptScore W2901814534C2776359362 @default.
- W2901814534 hasConceptScore W2901814534C2780451532 @default.
- W2901814534 hasConceptScore W2901814534C41008148 @default.
- W2901814534 hasConceptScore W2901814534C59404180 @default.
- W2901814534 hasConceptScore W2901814534C94625758 @default.
- W2901814534 hasConceptScore W2901814534C97931131 @default.
- W2901814534 hasLocation W29018145341 @default.
- W2901814534 hasLocation W29018145342 @default.
- W2901814534 hasLocation W29018145343 @default.
- W2901814534 hasOpenAccess W2901814534 @default.
- W2901814534 hasPrimaryLocation W29018145341 @default.
- W2901814534 hasRelatedWork W2024160000 @default.
- W2901814534 hasRelatedWork W2061273563 @default.
- W2901814534 hasRelatedWork W2507989420 @default.
- W2901814534 hasRelatedWork W2729514902 @default.
- W2901814534 hasRelatedWork W2773500201 @default.
- W2901814534 hasRelatedWork W2905846897 @default.
- W2901814534 hasRelatedWork W2970216048 @default.
- W2901814534 hasRelatedWork W2998168123 @default.
- W2901814534 hasRelatedWork W4283820830 @default.
- W2901814534 hasRelatedWork W4287995534 @default.
- W2901814534 isParatext "false" @default.
- W2901814534 isRetracted "false" @default.
- W2901814534 magId "2901814534" @default.
- W2901814534 workType "article" @default.