Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901830927> ?p ?o ?g. }
- W2901830927 abstract "Biometric person recognition systems are increasingly being used to enhance the security of physical and logical security systems. Palmprint and finger knuckle print recognition have gained attention in research and practical domains, providing a means of identification for security system access and personal recognition and presenting an interesting and challenging research problem. The overall aim of this work is to investigate biometric systems able to recognise people using their palmprints and finger knuckle prints. The work investigates the theoretical concepts behind palmprint and finger knuckle print recognition and proposes new algorithms to extract features for recognition systems able to identify a person from a test sample with a strong degree of confidence. The research has led to five contributions.The first contribution is concerned with the development of an ensemble learning framework using a variant of local binary patterns constructed from Pascal's coefficients of order n, termed Pascal's coefficient multiscale local binary pattern. In addition, a feature extraction technique which combines pyramid histograms of oriented gradients and Pascal's coefficient local binary patterns by concatenating the features for use in classification is also proposed. Secondly, a fusion approach is proposed by combining local binary pattern histograms of Fourier features with Gabor filter technique to generate a single feature extraction to improve palmprint recognition. The third contribution is related to a novel feature extraction method applied for use in palmprint and Finger Knuckle Print recognition. The multi-shift local binary pattern approach extends the original shift local binary pattern concept to a multi-scale dimension to obtain more robust and discriminating feature representations by extracting histograms and concatenating them into a single feature vector. The fifth contribution proposes a novel Fibonacci sequence local binary pattern descriptor and multi-scale Fibonacci sequence local binary pattern descriptor by carefully modifying the operator thresholding scheme at the pixel values. To achieve this Fibonacci numbers have been used to generate a distribution of binary codes at every pixel position in order to create descriptors that are more robust against lighting variations of images. Finally, a new feature set is developed for finger knuckle print recognition. This is inspired by using the completed local binary pattern, termed the dynamic threshold CLBP, which employs only the sign and magnitude components. The novelty proposes to encode the magnitude features using a dynamic thresholding technique to concatenate the sign and magnitude features." @default.
- W2901830927 created "2018-11-29" @default.
- W2901830927 creator A5055984852 @default.
- W2901830927 date "2017-01-01" @default.
- W2901830927 modified "2023-09-24" @default.
- W2901830927 title "Finger Knuckle Print and Palmprint for efficient person recognition" @default.
- W2901830927 cites W1505989829 @default.
- W2901830927 cites W1513960799 @default.
- W2901830927 cites W1539830036 @default.
- W2901830927 cites W1556858793 @default.
- W2901830927 cites W1573965745 @default.
- W2901830927 cites W1578180497 @default.
- W2901830927 cites W1760626296 @default.
- W2901830927 cites W1865468114 @default.
- W2901830927 cites W1942175312 @default.
- W2901830927 cites W1963654588 @default.
- W2901830927 cites W1974900975 @default.
- W2901830927 cites W1983441949 @default.
- W2901830927 cites W1985636418 @default.
- W2901830927 cites W1993710430 @default.
- W2901830927 cites W2012407727 @default.
- W2901830927 cites W2013265115 @default.
- W2901830927 cites W2016648380 @default.
- W2901830927 cites W2021803684 @default.
- W2901830927 cites W2022211506 @default.
- W2901830927 cites W2024602404 @default.
- W2901830927 cites W2034689860 @default.
- W2901830927 cites W2046405224 @default.
- W2901830927 cites W2052559302 @default.
- W2901830927 cites W2060940811 @default.
- W2901830927 cites W2072945480 @default.
- W2901830927 cites W2093238900 @default.
- W2901830927 cites W2094102746 @default.
- W2901830927 cites W2098461404 @default.
- W2901830927 cites W2102372511 @default.
- W2901830927 cites W2113454941 @default.
- W2901830927 cites W2114631941 @default.
- W2901830927 cites W2115629999 @default.
- W2901830927 cites W2116324098 @default.
- W2901830927 cites W2121452312 @default.
- W2901830927 cites W2129872783 @default.
- W2901830927 cites W2130283969 @default.
- W2901830927 cites W2133947744 @default.
- W2901830927 cites W2135346934 @default.
- W2901830927 cites W2144134344 @default.
- W2901830927 cites W2147141800 @default.
- W2901830927 cites W2148082513 @default.
- W2901830927 cites W2153984565 @default.
- W2901830927 cites W2154683974 @default.
- W2901830927 cites W2163352848 @default.
- W2901830927 cites W2165950260 @default.
- W2901830927 cites W2166213322 @default.
- W2901830927 cites W2169034478 @default.
- W2901830927 cites W2215117879 @default.
- W2901830927 cites W2370492997 @default.
- W2901830927 cites W2492236691 @default.
- W2901830927 cites W2532518083 @default.
- W2901830927 cites W2536989580 @default.
- W2901830927 cites W2571939141 @default.
- W2901830927 hasPublicationYear "2017" @default.
- W2901830927 type Work @default.
- W2901830927 sameAs 2901830927 @default.
- W2901830927 citedByCount "0" @default.
- W2901830927 crossrefType "dissertation" @default.
- W2901830927 hasAuthorship W2901830927A5055984852 @default.
- W2901830927 hasConcept C115961682 @default.
- W2901830927 hasConcept C127413603 @default.
- W2901830927 hasConcept C146318809 @default.
- W2901830927 hasConcept C153180895 @default.
- W2901830927 hasConcept C154945302 @default.
- W2901830927 hasConcept C184297639 @default.
- W2901830927 hasConcept C199360897 @default.
- W2901830927 hasConcept C2775868079 @default.
- W2901830927 hasConcept C2777503689 @default.
- W2901830927 hasConcept C31972630 @default.
- W2901830927 hasConcept C33923547 @default.
- W2901830927 hasConcept C41008148 @default.
- W2901830927 hasConcept C48372109 @default.
- W2901830927 hasConcept C52622490 @default.
- W2901830927 hasConcept C53533937 @default.
- W2901830927 hasConcept C75608658 @default.
- W2901830927 hasConcept C78519656 @default.
- W2901830927 hasConcept C87335442 @default.
- W2901830927 hasConcept C94375191 @default.
- W2901830927 hasConceptScore W2901830927C115961682 @default.
- W2901830927 hasConceptScore W2901830927C127413603 @default.
- W2901830927 hasConceptScore W2901830927C146318809 @default.
- W2901830927 hasConceptScore W2901830927C153180895 @default.
- W2901830927 hasConceptScore W2901830927C154945302 @default.
- W2901830927 hasConceptScore W2901830927C184297639 @default.
- W2901830927 hasConceptScore W2901830927C199360897 @default.
- W2901830927 hasConceptScore W2901830927C2775868079 @default.
- W2901830927 hasConceptScore W2901830927C2777503689 @default.
- W2901830927 hasConceptScore W2901830927C31972630 @default.
- W2901830927 hasConceptScore W2901830927C33923547 @default.
- W2901830927 hasConceptScore W2901830927C41008148 @default.
- W2901830927 hasConceptScore W2901830927C48372109 @default.
- W2901830927 hasConceptScore W2901830927C52622490 @default.
- W2901830927 hasConceptScore W2901830927C53533937 @default.
- W2901830927 hasConceptScore W2901830927C75608658 @default.