Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901850664> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2901850664 abstract "The importance of competitive sport events such as the World Cup and the World Baseball Classic for a majority of people can be easily found through the heated discussions in newspapers and other types of media such as the Internet while the fad hits. They are also highly discussed topics. Many people are even one-day fans with the same expectations; that is, they want their team to win. It is, however, very difficult to determine which team will stand out among the many. In this study, records and data from the many contests that the National Basketball Association (NBA), which also deals with competitive sports, has held will be analyzed and discussed in order to forecast results of games. The deep learning approach will be adopted and convolutional neural networks and data from 4147 games over the past 3 years will be used for analysis and to facilitate training on and forecasts done applying the model. Finally, forecasting results will be discussed. In previous studies, convolutional neural networks were more frequently applied to identifying images or objects. Therefore, with the current study, the hope is to combine deep learning in the forecast of event results and that the approach helps add to the accuracy of forecast results compared to other classifiers." @default.
- W2901850664 created "2018-11-29" @default.
- W2901850664 creator A5000576489 @default.
- W2901850664 creator A5000911075 @default.
- W2901850664 creator A5038663636 @default.
- W2901850664 date "2018-07-01" @default.
- W2901850664 modified "2023-10-14" @default.
- W2901850664 title "Forecasting Results of Sport Events Through Deep Learning" @default.
- W2901850664 cites W2101926813 @default.
- W2901850664 cites W2116360511 @default.
- W2901850664 cites W2465528855 @default.
- W2901850664 cites W2613985117 @default.
- W2901850664 cites W2734691436 @default.
- W2901850664 cites W2737749939 @default.
- W2901850664 cites W2747479026 @default.
- W2901850664 cites W2748806792 @default.
- W2901850664 cites W2765435620 @default.
- W2901850664 cites W2772285495 @default.
- W2901850664 cites W2607240167 @default.
- W2901850664 doi "https://doi.org/10.1109/icmlc.2018.8526954" @default.
- W2901850664 hasPublicationYear "2018" @default.
- W2901850664 type Work @default.
- W2901850664 sameAs 2901850664 @default.
- W2901850664 citedByCount "0" @default.
- W2901850664 crossrefType "proceedings-article" @default.
- W2901850664 hasAuthorship W2901850664A5000576489 @default.
- W2901850664 hasAuthorship W2901850664A5000911075 @default.
- W2901850664 hasAuthorship W2901850664A5038663636 @default.
- W2901850664 hasConcept C10138342 @default.
- W2901850664 hasConcept C103189561 @default.
- W2901850664 hasConcept C108583219 @default.
- W2901850664 hasConcept C112698675 @default.
- W2901850664 hasConcept C119857082 @default.
- W2901850664 hasConcept C121332964 @default.
- W2901850664 hasConcept C144133560 @default.
- W2901850664 hasConcept C154945302 @default.
- W2901850664 hasConcept C166957645 @default.
- W2901850664 hasConcept C182306322 @default.
- W2901850664 hasConcept C201280247 @default.
- W2901850664 hasConcept C2522767166 @default.
- W2901850664 hasConcept C2779662365 @default.
- W2901850664 hasConcept C41008148 @default.
- W2901850664 hasConcept C62520636 @default.
- W2901850664 hasConcept C81363708 @default.
- W2901850664 hasConcept C95457728 @default.
- W2901850664 hasConceptScore W2901850664C10138342 @default.
- W2901850664 hasConceptScore W2901850664C103189561 @default.
- W2901850664 hasConceptScore W2901850664C108583219 @default.
- W2901850664 hasConceptScore W2901850664C112698675 @default.
- W2901850664 hasConceptScore W2901850664C119857082 @default.
- W2901850664 hasConceptScore W2901850664C121332964 @default.
- W2901850664 hasConceptScore W2901850664C144133560 @default.
- W2901850664 hasConceptScore W2901850664C154945302 @default.
- W2901850664 hasConceptScore W2901850664C166957645 @default.
- W2901850664 hasConceptScore W2901850664C182306322 @default.
- W2901850664 hasConceptScore W2901850664C201280247 @default.
- W2901850664 hasConceptScore W2901850664C2522767166 @default.
- W2901850664 hasConceptScore W2901850664C2779662365 @default.
- W2901850664 hasConceptScore W2901850664C41008148 @default.
- W2901850664 hasConceptScore W2901850664C62520636 @default.
- W2901850664 hasConceptScore W2901850664C81363708 @default.
- W2901850664 hasConceptScore W2901850664C95457728 @default.
- W2901850664 hasLocation W29018506641 @default.
- W2901850664 hasOpenAccess W2901850664 @default.
- W2901850664 hasPrimaryLocation W29018506641 @default.
- W2901850664 hasRelatedWork W2572334665 @default.
- W2901850664 hasRelatedWork W2731899572 @default.
- W2901850664 hasRelatedWork W2920938200 @default.
- W2901850664 hasRelatedWork W3021430260 @default.
- W2901850664 hasRelatedWork W3159901390 @default.
- W2901850664 hasRelatedWork W3164822677 @default.
- W2901850664 hasRelatedWork W3196211586 @default.
- W2901850664 hasRelatedWork W3215138031 @default.
- W2901850664 hasRelatedWork W4220755519 @default.
- W2901850664 hasRelatedWork W4226246648 @default.
- W2901850664 isParatext "false" @default.
- W2901850664 isRetracted "false" @default.
- W2901850664 magId "2901850664" @default.
- W2901850664 workType "article" @default.