Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901852149> ?p ?o ?g. }
- W2901852149 endingPage "344" @default.
- W2901852149 startingPage "323" @default.
- W2901852149 abstract "This paper presents the Negative Binomial-Inverse Gaussian regression model for approximating the number of claims as an alternative to mixed Poisson regression models that have been widely used in various disciplines including actuarial applications. The Negative Binomial-Inverse Gaussian regression model can be considered as a plausible model for highly dispersed claim count data and this is the first time that it is used in a statistical or actuarial context. The main achievement is that we propose a quite simple Expectation-Maximization type algorithm for maximum likelihood estimation of the model. Finally, a real data application using motor insurance data is examined and both the a priori and a posteriori, or Bonus-Malus, premium rates resulting from the Negative Binomial-Inverse Gaussian model are calculated via the net premium principle and compared to those determined by the Negative Binomial Type I and the Poisson-Inverse Gaussian regression models that have been traditionally used for a priori and a posteriori ratemaking." @default.
- W2901852149 created "2018-11-29" @default.
- W2901852149 creator A5016860077 @default.
- W2901852149 creator A5017417100 @default.
- W2901852149 creator A5050016484 @default.
- W2901852149 date "2018-11-17" @default.
- W2901852149 modified "2023-09-25" @default.
- W2901852149 title "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking" @default.
- W2901852149 cites W1548669759 @default.
- W2901852149 cites W1684337834 @default.
- W2901852149 cites W1743952524 @default.
- W2901852149 cites W1830719945 @default.
- W2901852149 cites W1981903823 @default.
- W2901852149 cites W1987084611 @default.
- W2901852149 cites W2003226215 @default.
- W2901852149 cites W2012994662 @default.
- W2901852149 cites W2014980744 @default.
- W2901852149 cites W2017271700 @default.
- W2901852149 cites W2030932083 @default.
- W2901852149 cites W2041320945 @default.
- W2901852149 cites W2046816923 @default.
- W2901852149 cites W2054942786 @default.
- W2901852149 cites W2061289251 @default.
- W2901852149 cites W2076655005 @default.
- W2901852149 cites W2083006580 @default.
- W2901852149 cites W2090692107 @default.
- W2901852149 cites W2100495932 @default.
- W2901852149 cites W2112590871 @default.
- W2901852149 cites W2119634512 @default.
- W2901852149 cites W2149967443 @default.
- W2901852149 cites W2167611119 @default.
- W2901852149 cites W2167880853 @default.
- W2901852149 cites W2258745159 @default.
- W2901852149 cites W2290070502 @default.
- W2901852149 cites W2322426010 @default.
- W2901852149 cites W2410338850 @default.
- W2901852149 cites W2460230265 @default.
- W2901852149 cites W2485717584 @default.
- W2901852149 cites W2726402734 @default.
- W2901852149 cites W2899031489 @default.
- W2901852149 cites W3022987617 @default.
- W2901852149 cites W3123759912 @default.
- W2901852149 cites W4230619251 @default.
- W2901852149 cites W618548231 @default.
- W2901852149 cites W656455340 @default.
- W2901852149 doi "https://doi.org/10.1007/s13385-018-0186-2" @default.
- W2901852149 hasPublicationYear "2018" @default.
- W2901852149 type Work @default.
- W2901852149 sameAs 2901852149 @default.
- W2901852149 citedByCount "9" @default.
- W2901852149 countsByYear W29018521492020 @default.
- W2901852149 countsByYear W29018521492021 @default.
- W2901852149 countsByYear W29018521492022 @default.
- W2901852149 countsByYear W29018521492023 @default.
- W2901852149 crossrefType "journal-article" @default.
- W2901852149 hasAuthorship W2901852149A5016860077 @default.
- W2901852149 hasAuthorship W2901852149A5017417100 @default.
- W2901852149 hasAuthorship W2901852149A5050016484 @default.
- W2901852149 hasBestOaLocation W29018521492 @default.
- W2901852149 hasConcept C100906024 @default.
- W2901852149 hasConcept C105795698 @default.
- W2901852149 hasConcept C144024400 @default.
- W2901852149 hasConcept C149782125 @default.
- W2901852149 hasConcept C149923435 @default.
- W2901852149 hasConcept C152877465 @default.
- W2901852149 hasConcept C199335787 @default.
- W2901852149 hasConcept C2908647359 @default.
- W2901852149 hasConcept C33643355 @default.
- W2901852149 hasConcept C33923547 @default.
- W2901852149 hasConcept C49781872 @default.
- W2901852149 hasConcept C73269764 @default.
- W2901852149 hasConcept C9810830 @default.
- W2901852149 hasConceptScore W2901852149C100906024 @default.
- W2901852149 hasConceptScore W2901852149C105795698 @default.
- W2901852149 hasConceptScore W2901852149C144024400 @default.
- W2901852149 hasConceptScore W2901852149C149782125 @default.
- W2901852149 hasConceptScore W2901852149C149923435 @default.
- W2901852149 hasConceptScore W2901852149C152877465 @default.
- W2901852149 hasConceptScore W2901852149C199335787 @default.
- W2901852149 hasConceptScore W2901852149C2908647359 @default.
- W2901852149 hasConceptScore W2901852149C33643355 @default.
- W2901852149 hasConceptScore W2901852149C33923547 @default.
- W2901852149 hasConceptScore W2901852149C49781872 @default.
- W2901852149 hasConceptScore W2901852149C73269764 @default.
- W2901852149 hasConceptScore W2901852149C9810830 @default.
- W2901852149 hasIssue "1" @default.
- W2901852149 hasLocation W29018521491 @default.
- W2901852149 hasLocation W29018521492 @default.
- W2901852149 hasOpenAccess W2901852149 @default.
- W2901852149 hasPrimaryLocation W29018521491 @default.
- W2901852149 hasRelatedWork W2116166733 @default.
- W2901852149 hasRelatedWork W2159796125 @default.
- W2901852149 hasRelatedWork W2319668974 @default.
- W2901852149 hasRelatedWork W2971731486 @default.
- W2901852149 hasRelatedWork W3186588872 @default.
- W2901852149 hasRelatedWork W3210390693 @default.
- W2901852149 hasRelatedWork W4365393527 @default.
- W2901852149 hasRelatedWork W4366769355 @default.