Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901856993> ?p ?o ?g. }
- W2901856993 endingPage "44" @default.
- W2901856993 startingPage "33" @default.
- W2901856993 abstract "The flow of particulate solid materials in a gas flowline can significantly erode mechanical equipment. Hence, real-time quantitative monitoring is a timely need for the oil and gas industry to achieve real-time control and production optimisation. Although a considerable amount of research has been conducted employing acoustic signals for qualitative monitoring, there is still an unmet demand for a simple and robust real-time quantitative monitoring system. Acoustic signal processing with machine learning is a simple and robust method that has the potential to meet this demand but has not been previously exploited for real-time quantitative monitoring of particulate solid materials in a gas flowline. This paper proposes a novel instrumentation system for on-line measurement of solid flow rate, solid concentration, line pressure drop and gas velocity in a gas-solid multiphase flow using acoustic sensing technology coupled with signal processing techniques and machine learning algorithm. The acoustic sensor is used to capture the acoustic wave emitted from the impingements of the solid particles on the bend component of the flowline. Signal processing techniques are used to extract relevant features about the impingements. An integrated, conventional Artificial Neural Network (ANN) is used to capture the distribution of the acoustic feature vectors in order to establish the relationship between the measurands and the acoustic signal. However, conventional ANNs are mainly concerned with capturing systematic patterns in a distribution of measurements fixed in time and in this case the dynamics of the generated acoustic signal varies with time. A modification, called Time-Delay Neural Network (TDNN) is used to capture such dynamics. The proposed system compares the performance of the classical ANN and the TDNN models. Results obtained demonstrate that with the classical ANN, the normalised root mean square error (NRMSE) is 0.66, 0.29, 0.26 and 0.46 for the solid flow rate, solid concentration, line pressure drop and gas velocity respectively. With the TDNN model, the NRMSE is 0.18, 0.17, 0.20 and 0.16 for the solid flow rate, solid concentration, line pressure drop and gas velocity respectively. In comparison with the ANN model, the TDNN model has better performance as the NRMSE values are lower for all the models for the measurands. Overall, this study lays the basis for employing signal processing techniques and machine learning algorithm in the development of a simple, reliable and low cost real-time quantitative particulate solid flow monitoring system." @default.
- W2901856993 created "2018-11-29" @default.
- W2901856993 creator A5013895764 @default.
- W2901856993 creator A5082796408 @default.
- W2901856993 creator A5085047511 @default.
- W2901856993 date "2019-03-01" @default.
- W2901856993 modified "2023-10-17" @default.
- W2901856993 title "Acoustic signal processing with robust machine learning algorithm for improved monitoring of particulate solid materials in a gas flowline" @default.
- W2901856993 cites W1568807664 @default.
- W2901856993 cites W186826960 @default.
- W2901856993 cites W1875800788 @default.
- W2901856993 cites W1966660545 @default.
- W2901856993 cites W1971385370 @default.
- W2901856993 cites W1988132106 @default.
- W2901856993 cites W1995341919 @default.
- W2901856993 cites W1995875735 @default.
- W2901856993 cites W1998476814 @default.
- W2901856993 cites W2002302337 @default.
- W2901856993 cites W2018824025 @default.
- W2901856993 cites W2024956459 @default.
- W2901856993 cites W2034355442 @default.
- W2901856993 cites W2036713095 @default.
- W2901856993 cites W2039258118 @default.
- W2901856993 cites W2057734773 @default.
- W2901856993 cites W2061438946 @default.
- W2901856993 cites W2071013825 @default.
- W2901856993 cites W2077585953 @default.
- W2901856993 cites W2083141205 @default.
- W2901856993 cites W2090199374 @default.
- W2901856993 cites W2117671523 @default.
- W2901856993 cites W2217250140 @default.
- W2901856993 cites W2302719757 @default.
- W2901856993 cites W2470231114 @default.
- W2901856993 cites W2555132657 @default.
- W2901856993 cites W2606276885 @default.
- W2901856993 cites W2734646927 @default.
- W2901856993 cites W2766491931 @default.
- W2901856993 cites W2788478361 @default.
- W2901856993 cites W4249723087 @default.
- W2901856993 doi "https://doi.org/10.1016/j.flowmeasinst.2018.11.015" @default.
- W2901856993 hasPublicationYear "2019" @default.
- W2901856993 type Work @default.
- W2901856993 sameAs 2901856993 @default.
- W2901856993 citedByCount "6" @default.
- W2901856993 countsByYear W29018569932020 @default.
- W2901856993 countsByYear W29018569932021 @default.
- W2901856993 countsByYear W29018569932022 @default.
- W2901856993 countsByYear W29018569932023 @default.
- W2901856993 crossrefType "journal-article" @default.
- W2901856993 hasAuthorship W2901856993A5013895764 @default.
- W2901856993 hasAuthorship W2901856993A5082796408 @default.
- W2901856993 hasAuthorship W2901856993A5085047511 @default.
- W2901856993 hasBestOaLocation W29018569932 @default.
- W2901856993 hasConcept C104267543 @default.
- W2901856993 hasConcept C114088122 @default.
- W2901856993 hasConcept C121332964 @default.
- W2901856993 hasConcept C127413603 @default.
- W2901856993 hasConcept C154945302 @default.
- W2901856993 hasConcept C199360897 @default.
- W2901856993 hasConcept C21880701 @default.
- W2901856993 hasConcept C24890656 @default.
- W2901856993 hasConcept C2779843651 @default.
- W2901856993 hasConcept C41008148 @default.
- W2901856993 hasConcept C50644808 @default.
- W2901856993 hasConcept C57879066 @default.
- W2901856993 hasConcept C84462506 @default.
- W2901856993 hasConcept C9390403 @default.
- W2901856993 hasConceptScore W2901856993C104267543 @default.
- W2901856993 hasConceptScore W2901856993C114088122 @default.
- W2901856993 hasConceptScore W2901856993C121332964 @default.
- W2901856993 hasConceptScore W2901856993C127413603 @default.
- W2901856993 hasConceptScore W2901856993C154945302 @default.
- W2901856993 hasConceptScore W2901856993C199360897 @default.
- W2901856993 hasConceptScore W2901856993C21880701 @default.
- W2901856993 hasConceptScore W2901856993C24890656 @default.
- W2901856993 hasConceptScore W2901856993C2779843651 @default.
- W2901856993 hasConceptScore W2901856993C41008148 @default.
- W2901856993 hasConceptScore W2901856993C50644808 @default.
- W2901856993 hasConceptScore W2901856993C57879066 @default.
- W2901856993 hasConceptScore W2901856993C84462506 @default.
- W2901856993 hasConceptScore W2901856993C9390403 @default.
- W2901856993 hasFunder F4320334627 @default.
- W2901856993 hasLocation W29018569931 @default.
- W2901856993 hasLocation W29018569932 @default.
- W2901856993 hasLocation W29018569933 @default.
- W2901856993 hasOpenAccess W2901856993 @default.
- W2901856993 hasPrimaryLocation W29018569931 @default.
- W2901856993 hasRelatedWork W1588586332 @default.
- W2901856993 hasRelatedWork W1993352222 @default.
- W2901856993 hasRelatedWork W2015531997 @default.
- W2901856993 hasRelatedWork W2045506483 @default.
- W2901856993 hasRelatedWork W2123480368 @default.
- W2901856993 hasRelatedWork W2346866077 @default.
- W2901856993 hasRelatedWork W2380349621 @default.
- W2901856993 hasRelatedWork W2386387936 @default.
- W2901856993 hasRelatedWork W2603690287 @default.
- W2901856993 hasRelatedWork W4256612744 @default.
- W2901856993 hasVolume "65" @default.