Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901877307> ?p ?o ?g. }
- W2901877307 endingPage "1687" @default.
- W2901877307 startingPage "1687" @default.
- W2901877307 abstract "The study goal was to develop automated user-friendly remote-sensing based evapotranspiration (ET) estimation tools: (i) artificial neural network (ANN) based models, (ii) ArcGIS-based automated geospatial model, and (iii) executable software to predict pine forest daily ET flux on a pixel- or plot average-scale. Study site has had long-term eddy-flux towers for ET measurements since 2006. Cloud-free Landsat images of 2006−2014 were processed using advanced data mining to obtain Principal Component bands to correlate with ET data. The regression model’s r2 was 0.58. The backpropagation neural network (BPNN) and radial basis function network (RBFN) models provided a testing/validation average absolute error of 0.18 and 0.15 Wm−2 and average accuracy of 81% and 85%, respectively. ANN models though robust, require special ANN software and skill to operate; therefore, automated geospatial model (toolbox) was developed on ArcGIS ModelBuilder as user-friendly alternative. ET flux map developed with model tool provided consistent ET patterns for landuses. The software was developed for lay-users for ET estimation." @default.
- W2901877307 created "2018-11-29" @default.
- W2901877307 creator A5015360328 @default.
- W2901877307 creator A5062796921 @default.
- W2901877307 creator A5064869682 @default.
- W2901877307 creator A5072847443 @default.
- W2901877307 creator A5076031223 @default.
- W2901877307 date "2018-11-19" @default.
- W2901877307 modified "2023-09-26" @default.
- W2901877307 title "Automated Geospatial Models of Varying Complexities for Pine Forest Evapotranspiration Estimation with Advanced Data Mining" @default.
- W2901877307 cites W1542399062 @default.
- W2901877307 cites W1922378765 @default.
- W2901877307 cites W1965759874 @default.
- W2901877307 cites W1971072691 @default.
- W2901877307 cites W1981072855 @default.
- W2901877307 cites W1997975780 @default.
- W2901877307 cites W1998039980 @default.
- W2901877307 cites W2002694429 @default.
- W2901877307 cites W2007442358 @default.
- W2901877307 cites W2018318189 @default.
- W2901877307 cites W2020141522 @default.
- W2901877307 cites W2022054570 @default.
- W2901877307 cites W2022351663 @default.
- W2901877307 cites W2028351870 @default.
- W2901877307 cites W2029105146 @default.
- W2901877307 cites W2039253809 @default.
- W2901877307 cites W2044393873 @default.
- W2901877307 cites W2049270177 @default.
- W2901877307 cites W2056069793 @default.
- W2901877307 cites W2070936556 @default.
- W2901877307 cites W2075899207 @default.
- W2901877307 cites W2081293060 @default.
- W2901877307 cites W2081561063 @default.
- W2901877307 cites W2082173950 @default.
- W2901877307 cites W2084078001 @default.
- W2901877307 cites W2084743731 @default.
- W2901877307 cites W2089468765 @default.
- W2901877307 cites W2099508256 @default.
- W2901877307 cites W2100184191 @default.
- W2901877307 cites W2100565056 @default.
- W2901877307 cites W2111169586 @default.
- W2901877307 cites W2112674101 @default.
- W2901877307 cites W2115672883 @default.
- W2901877307 cites W2116310314 @default.
- W2901877307 cites W2117703295 @default.
- W2901877307 cites W2135685863 @default.
- W2901877307 cites W2137944836 @default.
- W2901877307 cites W2139811877 @default.
- W2901877307 cites W2140441157 @default.
- W2901877307 cites W2158268769 @default.
- W2901877307 cites W2167453193 @default.
- W2901877307 cites W2171277043 @default.
- W2901877307 cites W2285883816 @default.
- W2901877307 cites W2338049369 @default.
- W2901877307 cites W2466782577 @default.
- W2901877307 cites W2509168775 @default.
- W2901877307 cites W2595305749 @default.
- W2901877307 cites W2784746841 @default.
- W2901877307 cites W2789632984 @default.
- W2901877307 cites W4243079669 @default.
- W2901877307 doi "https://doi.org/10.3390/w10111687" @default.
- W2901877307 hasPublicationYear "2018" @default.
- W2901877307 type Work @default.
- W2901877307 sameAs 2901877307 @default.
- W2901877307 citedByCount "5" @default.
- W2901877307 countsByYear W29018773072019 @default.
- W2901877307 countsByYear W29018773072020 @default.
- W2901877307 countsByYear W29018773072022 @default.
- W2901877307 crossrefType "journal-article" @default.
- W2901877307 hasAuthorship W2901877307A5015360328 @default.
- W2901877307 hasAuthorship W2901877307A5062796921 @default.
- W2901877307 hasAuthorship W2901877307A5064869682 @default.
- W2901877307 hasAuthorship W2901877307A5072847443 @default.
- W2901877307 hasAuthorship W2901877307A5076031223 @default.
- W2901877307 hasBestOaLocation W29018773071 @default.
- W2901877307 hasConcept C111919701 @default.
- W2901877307 hasConcept C119857082 @default.
- W2901877307 hasConcept C124101348 @default.
- W2901877307 hasConcept C154945302 @default.
- W2901877307 hasConcept C155032097 @default.
- W2901877307 hasConcept C160145156 @default.
- W2901877307 hasConcept C199360897 @default.
- W2901877307 hasConcept C205649164 @default.
- W2901877307 hasConcept C2777904410 @default.
- W2901877307 hasConcept C41008148 @default.
- W2901877307 hasConcept C50644808 @default.
- W2901877307 hasConcept C62649853 @default.
- W2901877307 hasConcept C9770341 @default.
- W2901877307 hasConceptScore W2901877307C111919701 @default.
- W2901877307 hasConceptScore W2901877307C119857082 @default.
- W2901877307 hasConceptScore W2901877307C124101348 @default.
- W2901877307 hasConceptScore W2901877307C154945302 @default.
- W2901877307 hasConceptScore W2901877307C155032097 @default.
- W2901877307 hasConceptScore W2901877307C160145156 @default.
- W2901877307 hasConceptScore W2901877307C199360897 @default.
- W2901877307 hasConceptScore W2901877307C205649164 @default.
- W2901877307 hasConceptScore W2901877307C2777904410 @default.
- W2901877307 hasConceptScore W2901877307C41008148 @default.