Matches in SemOpenAlex for { <https://semopenalex.org/work/W2901897364> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2901897364 abstract "Links prediction based on supervised learning is a main research topic in the field of complex network analysis. The core process of these methods is that the network is divided into training and target sets, then a classification model is used to learn the training set and forecast the missing links in target set. Such methods have two major challenges: first, we need to dig deep network information to define a set of features; Second, how to incorporate feature selection model to mine discriminative features. To solve the above problem, a model which integrates community features and mRMR feature selection was proposed. Such model first discovered global features associated with the link through the community, then used classical mRMR algorith-m metrics to measure the correlation between features, and filter out the best representative candidates by clearing noisy information. Experimental results show our proposed model can effectively improve the performance of link classification." @default.
- W2901897364 created "2018-11-29" @default.
- W2901897364 creator A5026243783 @default.
- W2901897364 creator A5078788222 @default.
- W2901897364 creator A5081496403 @default.
- W2901897364 date "2018-07-01" @default.
- W2901897364 modified "2023-10-16" @default.
- W2901897364 title "Preserving Community Feature Extraction And Mrmr Feature Selection For Link Classification In Complex Networks" @default.
- W2901897364 cites W1539689348 @default.
- W2901897364 cites W1546961578 @default.
- W2901897364 cites W1985749074 @default.
- W2901897364 cites W2008620264 @default.
- W2901897364 cites W2036433616 @default.
- W2901897364 cites W2041711198 @default.
- W2901897364 cites W2064503471 @default.
- W2901897364 cites W2066692087 @default.
- W2901897364 cites W2125050594 @default.
- W2901897364 cites W2131681506 @default.
- W2901897364 cites W2154053567 @default.
- W2901897364 cites W2166468869 @default.
- W2901897364 cites W2384428392 @default.
- W2901897364 cites W45251512 @default.
- W2901897364 doi "https://doi.org/10.1109/icmlc.2018.8526974" @default.
- W2901897364 hasPublicationYear "2018" @default.
- W2901897364 type Work @default.
- W2901897364 sameAs 2901897364 @default.
- W2901897364 citedByCount "0" @default.
- W2901897364 crossrefType "proceedings-article" @default.
- W2901897364 hasAuthorship W2901897364A5026243783 @default.
- W2901897364 hasAuthorship W2901897364A5078788222 @default.
- W2901897364 hasAuthorship W2901897364A5081496403 @default.
- W2901897364 hasConcept C106131492 @default.
- W2901897364 hasConcept C119857082 @default.
- W2901897364 hasConcept C124101348 @default.
- W2901897364 hasConcept C138885662 @default.
- W2901897364 hasConcept C148483581 @default.
- W2901897364 hasConcept C153180895 @default.
- W2901897364 hasConcept C154945302 @default.
- W2901897364 hasConcept C177264268 @default.
- W2901897364 hasConcept C199360897 @default.
- W2901897364 hasConcept C202444582 @default.
- W2901897364 hasConcept C2776401178 @default.
- W2901897364 hasConcept C31972630 @default.
- W2901897364 hasConcept C33923547 @default.
- W2901897364 hasConcept C41008148 @default.
- W2901897364 hasConcept C41895202 @default.
- W2901897364 hasConcept C52622490 @default.
- W2901897364 hasConcept C9652623 @default.
- W2901897364 hasConcept C97931131 @default.
- W2901897364 hasConceptScore W2901897364C106131492 @default.
- W2901897364 hasConceptScore W2901897364C119857082 @default.
- W2901897364 hasConceptScore W2901897364C124101348 @default.
- W2901897364 hasConceptScore W2901897364C138885662 @default.
- W2901897364 hasConceptScore W2901897364C148483581 @default.
- W2901897364 hasConceptScore W2901897364C153180895 @default.
- W2901897364 hasConceptScore W2901897364C154945302 @default.
- W2901897364 hasConceptScore W2901897364C177264268 @default.
- W2901897364 hasConceptScore W2901897364C199360897 @default.
- W2901897364 hasConceptScore W2901897364C202444582 @default.
- W2901897364 hasConceptScore W2901897364C2776401178 @default.
- W2901897364 hasConceptScore W2901897364C31972630 @default.
- W2901897364 hasConceptScore W2901897364C33923547 @default.
- W2901897364 hasConceptScore W2901897364C41008148 @default.
- W2901897364 hasConceptScore W2901897364C41895202 @default.
- W2901897364 hasConceptScore W2901897364C52622490 @default.
- W2901897364 hasConceptScore W2901897364C9652623 @default.
- W2901897364 hasConceptScore W2901897364C97931131 @default.
- W2901897364 hasLocation W29018973641 @default.
- W2901897364 hasOpenAccess W2901897364 @default.
- W2901897364 hasPrimaryLocation W29018973641 @default.
- W2901897364 hasRelatedWork W1486171644 @default.
- W2901897364 hasRelatedWork W1968752118 @default.
- W2901897364 hasRelatedWork W2111662190 @default.
- W2901897364 hasRelatedWork W2207021851 @default.
- W2901897364 hasRelatedWork W2245227447 @default.
- W2901897364 hasRelatedWork W2369273316 @default.
- W2901897364 hasRelatedWork W2434703935 @default.
- W2901897364 hasRelatedWork W2515280043 @default.
- W2901897364 hasRelatedWork W2754314225 @default.
- W2901897364 hasRelatedWork W2181817726 @default.
- W2901897364 isParatext "false" @default.
- W2901897364 isRetracted "false" @default.
- W2901897364 magId "2901897364" @default.
- W2901897364 workType "article" @default.